Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/MarcoGorelli/polars-upgrade
Automatically upgrade your Polars code to use the latest syntax available
https://github.com/MarcoGorelli/polars-upgrade
Last synced: 2 months ago
JSON representation
Automatically upgrade your Polars code to use the latest syntax available
- Host: GitHub
- URL: https://github.com/MarcoGorelli/polars-upgrade
- Owner: MarcoGorelli
- License: mit
- Created: 2023-12-09T19:31:35.000Z (about 1 year ago)
- Default Branch: main
- Last Pushed: 2024-06-18T08:51:07.000Z (7 months ago)
- Last Synced: 2024-11-09T19:46:39.976Z (2 months ago)
- Language: Python
- Size: 1.2 MB
- Stars: 62
- Watchers: 2
- Forks: 1
- Open Issues: 6
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-polars - polars-upgrade - Python package that automatically upgrades your Polars code so it's compatible with future versions by [@MarcoGorelli](https://github.com/MarcoGorelli). (Libraries/Packages/Scripts / Python)
README
polars-upgrade
==============
[![PyPI version](https://badge.fury.io/py/polars-upgrade.svg)](https://badge.fury.io/py/polars-upgrade)
Automatically upgrade your Polars code so it's compatible with future versions.
## Installation
Easy:
```
pip install -U polars-upgrade
```## Usage (command-line)
Run
```
polars-upgrade my_project --target-version=0.20.31
```
from the command line. Replace `0.20.31` and `my_project` with your Polars version,
and the name of your directory.NOTE: this tool will modify your code!
You're advised to stage your files before running it.## Usage (pre-commit hook)
```yaml
- repo: https://github.com/MarcoGorelli/polars-upgrade
rev: 0.3.6 # polars-upgrade version goes here
hooks:
- id: polars-upgrade
args: [--target-version=0.20.31] # Polars version goes here
```## Usage (Jupyter Notebooks)
Install [nbqa](https://github.com/nbQA-dev/nbQA) and then run
```
nbqa polars_upgrade my_project --target-version=0.20.31
```## Usage (library)
In a Python script:
```python
from polars_upgrade import rewrite, Settingssrc = """\
import polars as pl
df.select(pl.count())
"""
settings = Settings(target_version=(0, 20, 4))
output = rewrite(src, settings=settings)
print(output)
```
Output:
```
import polars as pl
df.select(pl.len())
```If your snippet does _not_ include `import polars` or `import as pl`,
then you will also need to provide `pl` and/or `polars` to `aliases`, else `polars-upgrade` will
not perform the rewrite. Example:```python
from polars_upgrade import rewrite, Settingssrc = """\
df.select(pl.count())
"""
settings = Settings(target_version=(0, 20, 4))
output = rewrite(src, settings=settings, aliases={'pl'})
print(output)
```
Output:
```
df.select(pl.len())
```## Supported rewrites
### Version 0.18.12+
```diff
- pl.avg
+ pl.mean
```### Version 0.19.0+
```diff
- df.groupby_dynamic
+ df.group_by_dynamic
- df.groupby_rolling
+ df.rolling
- df.rolling('ts', period='3d').apply
+ df.rolling('ts', period='3d').map_groups
- pl.col('a').rolling_apply
+ pl.col('a').rolling_map
- pl.col('a').apply
+ pl.col('a').map_elements
- pl.col('a').map
+ pl.col('a').map_batches
- pl.map
+ pl.map_batches
- pl.apply
+ pl.map_groups
- pl.col('a').any(drop_nulls=True)
+ pl.col('a').any(ignore_nulls=True)
- pl.col('a').all(drop_nulls=True)
+ pl.col('a').all(ignore_nulls=True)
- pl.col('a').value_counts(multithreaded=True)
+ pl.col('a').value_counts(parallel=True)
```### Version 0.19.2+
```diff
- pl.col('a').is_not
+ pl.col('a').not_
```### Version 0.19.3+
```diff
- pl.enable_string_cache(True)
+ pl.enable_string_cache()
- pl.enable_string_cache(False)
+ pl.disable_string_cache()
- pl.col('a').list.count_match
+ pl.col('a').list.count_matches
- pl.col('a').is_last
+ pl.col('a').is_last_distinct
- pl.col('a').is_first
+ pl.col('a').is_first_distinct
- pl.col('a').str.strip
+ pl.col('a').str.strip_chars
- pl.col('a').str.lstrip
+ pl.col('a').str.strip_chars_start
- pl.col('a').str.rstrip
+ pl.col('a').str.strip_chars_end
- pl.col('a').str.count_match
+ pl.col('a').str.count_matches
- pl.col("dt").dt.offset_by("1mo_saturating")
+ pl.col("dt").dt.offset_by("1mo")
```### Version 0.19.4+
```diff
- df.group_by_dynamic('ts', every='3d', truncate=True)
+ df.group_by_dynamic('ts', every='3d', label='left')
- df.group_by_dynamic('ts', every='3d', truncate=False)
+ df.group_by_dynamic('ts', every='3d', label='datapoint')
```### Version 0.19.8+
```diff
- pl.col('a').list.lengths
+ pl.col('a').list.len
- pl.col('a').str.lengths
+ pl.col('a').str.len_bytes
- pl.col('a').str.n_chars
+ pl.col('a').str.len_chars
```### Version 0.19.11+
```diff
- pl.col('a').shift(periods=4)
+ pl.col('a').shift(n=4)
- pl.col('a').shift_and_fill(periods=4)
+ pl.col('a').shift_and_fill(n=4)
- pl.col('a').list.shift(periods=4)
+ pl.col('a').list.shift(n=4)
- pl.col('a').map_dict(remapping={1: 2})
+ pl.col('a').map_dict(mapping={1: 2})
```### Version 0.19.12+
```diff
- pl.col('a').keep_name
+ pl.col('a').name.keep
- pl.col('a').suffix
+ pl.col('a').name.suffix
- pl.col('a').prefix
+ pl.col('a').name.prefix
- pl.col('a').map_alias
+ pl.col('a').name.map
- pl.col('a').str.ljust
+ pl.col('a').str.pad_end
- pl.col('a').str.rjust
+ pl.col('a').str.pad_start
- pl.col('a').zfill(alignment=3)
+ pl.col('a').zfill(length=3)
- pl.col('a').ljust(width=3)
+ pl.col('a').ljust(length=3)
- pl.col('a').rjust(width=3)
+ pl.col('a').rjust(length=3)
```### Version 0.19.13+
```diff
- pl.col('a').dt.milliseconds
+ pl.col('a').dt.total_milliseconds
- pl.col('a').dt.microseconds
+ pl.col('a').dt.total_microseconds
- pl.col('a').dt.nanoseconds
+ pl.col('a').dt.total_nanoseconds
```
(and so on for other units)### Version 0.19.14+
```diff
- pl.col('a').list.take
+ pl.col('a').list.gather
- pl.col('a').cumcount
+ pl.col('a').cum_count
- pl.col('a').cummax
+ pl.col('a').cum_max
- pl.col('a').cummin
+ pl.col('a').cum_min
- pl.col('a').cumprod
+ pl.col('a').cum_prod
- pl.col('a').cumsum
+ pl.col('a').cum_sum
- pl.col('a').cumcount
+ pl.col('a').cum_count
- pl.col('a').take
+ pl.col('a').gather
- pl.col('a').take_every
+ pl.col('a').gather_every
- pl.cumsum
+ pl.cum_sum
- pl.cumfold
+ pl.cum_fold
- pl.cumreduce
+ pl.cum_reduce
- pl.cumsum_horizontal
+ pl.cum_sum_horizontal
- pl.col('a').list.take(index=[1, 2])
+ pl.col('a').list.take(indices=[1, 2])
- pl.col('a').str.parse_int(radix=1)
+ pl.col('a').str.parse_int(base=1)
```### Version 0.19.15+
```diff
- pl.col('a').str.json_extract
+ pl.col('a').str.json_decode
```### Version 0.19.16+
```diff
- pl.col('a').map_dict({'a': 'b'})
+ pl.col('a').replace({'a': 'b'}, default=None)
- pl.col('a').map_dict({'a': 'b'}, default='c')
+ pl.col('a').replace({'a': 'b'}, default='c')
```### Version 0.20.0+
```diff
- df.write_database(table_name='foo', if_exists="append")
+ df.write_database(table_name='foo', if_table_exists="append")
```### Version 0.20.4+
```diff
- pl.col('a').where
+ pl.col('a').filter
- pl.count()
+ pl.len()
- df.with_row_count('row_number')
+ df.with_row_index('row_number')
- pl.scan_ndjson(source, row_count_name='foo', row_count_offset=3)
+ pl.scan_ndjson(source, row_index_name='foo', row_index_offset=3)
[...and similarly for `read_csv`, `read_csv_batched`, `scan_csv`, `read_ipc`, `read_ipc_stream`, `scan_ipc`, `read_parquet`, `scan_parquet`]
```### Version 0.20.5+
```diff
- df.pivot(index=index, values=values, columns=columns, aggregate_function='count')
+ df.pivot(index=index, values=values, columns=columns, aggregate_function='len')
```### Version 0.20.6+
```diff
- pl.read_excel(source, xlsx2csv_options=options, read_csv_options=read_options)
+ pl.read_excel(source, engine_options=options, read_options=read_options)
```### Version 0.20.7+
```diff
- pl.threadpool_size
+ pl.thread_pool_size
```### Version 0.20.8+
```diff
- df.pivot(a, b, c)
+ df.pivot(values=a, index=b, columns=c)
```### Version 0.20.11+
```diff
- pl.col('a').meta.write_json
+ pl.col('a').meta.serialize
```### Version 0.20.14+
```diff
- df.group_by_dynamic('time', every='2d', by='symbol')
+ df.group_by_dynamic('time', every='2d', group_by='symbol')
- df.rolling('time', period='2d', by='symbol')
+ df.rolling('time', period='2d', group_by='symbol')
- df.upsample('time', every='2d', by='symbol')
+ df.upsample('time', every='2d', group_by='symbol')
```### Version 0.20.17+
```diff
- pl.from_repr(tbl=data)
+ pl.from_repr(data=data)
```### Version 0.20.24+
```diff
- pl.col('a').rolling_min('2d', by='time')
+ pl.col('a').rolling_min_by(window_size='2d', by='time')
- pl.col('a').rolling_max('2d', by='time')
+ pl.col('a').rolling_max_by(window_size='2d', by='time')
- pl.col('a').rolling_mean('2d', by='time')
+ pl.col('a').rolling_mean_by(window_size='2d', by='time')
- pl.col('a').rolling_std('2d', by='time')
+ pl.col('a').rolling_std_by(window_size='2d', by='time')
- pl.col('a').rolling_var('2d', by='time')
+ pl.col('a').rolling_var_by(window_size='2d', by='time')
- pl.col('a').rolling_prod('2d', by='time')
+ pl.col('a').rolling_prod_by(window_size='2d', by='time')
- pl.col('a').rolling_sum('2d', by='time')
+ pl.col('a').rolling_sum_by(window_size='2d', by='time')
```### Version 0.20.29+
```diff
- df.join(df_right, how='outer')
+ df.join(df_right, how='full')
- df.join(df_right, how='outer_coalesce')
+ df.join(df_right, how='full', coalesce=True)
```### Version 0.20.31+
```diff
- pl.read_csv(file, dtypes=schema)
+ pl.read_csv(file, schema=schema)
- pl.SQLContext(eager_execution=True)
+ pl.SQLContext(eager=True)
- pl.col('a').top_k(k=2, maintain_order=True)
+ pl.col('a').top_k(k=2)
```## Notes
This work is derivative of [pyupgrade](https://github.com/asottile/pyupgrade) - many parts
have been lifted verbatim. As required, I've included pyupgrade's license.