Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/MengLcool/SEGIC
https://github.com/MengLcool/SEGIC
Last synced: about 1 month ago
JSON representation
- Host: GitHub
- URL: https://github.com/MengLcool/SEGIC
- Owner: MengLcool
- License: mit
- Created: 2023-11-23T07:30:25.000Z (about 1 year ago)
- Default Branch: master
- Last Pushed: 2024-07-10T02:08:41.000Z (6 months ago)
- Last Synced: 2024-07-10T05:11:51.890Z (6 months ago)
- Size: 1.45 MB
- Stars: 15
- Watchers: 4
- Forks: 0
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- Awesome-Segment-Anything - [code
README
# SEGIC: Unleashing the Emergent Correspondence for In-Context Segmentation
### [Paper (ArXiv)](https://arxiv.org/abs/2311.14671)
We introduce SEGIC, an end-to-end segment-in-context framework built upon a single frozen vision foundation model.
![teaser](assets/teaser.png)
## Model ZOO
| Model | Backbone | Iters | Config | Download |
| ------ | -------- | ------- | ----- | ----- |
| SEGIC | DINOv2-l | 80k*12e | [config](scripts/segic_dist.sh) | [model](https://huggingface.co/menglc/SEGIC/blob/main/segic_dinov2_l_80kx12e.pth)
| SEGIC | DINOv2-l | 160k*12e | [config](scripts/segic_dist.sh) | [model](https://huggingface.co/menglc/SEGIC/blob/main/segic_dinov2_l_160kx12e.pth)## Environment Setup
```
conda create --name segic python=3.10 -y
conda activate segic
pip install torch==1.13.1+cu117 torchvision==0.14.1+cu117 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu117
pip install -r requirements.txt
```## Train SEGIC
```
bash scripts/segic_dist.sh 8 dinov2 OUTPUT/all_exps/abs_backbone/dinov2_l --dinov2_model l --samples_per_epoch 80000
```## Evaluate SEGIC
### Download Datasets
The dataset should be organized as:
```
data
├── COCO2014
│ ├── annotations
│ ├── train2014
│ └── val2014
├── DAVIS
│ ├── 2016
│ └── 2017
├── FSS-1000
│ ├── abacus
│ ├── abe's_flyingfish
│ ├── ab_wheel
│ ├── ...
└── ytbvos18
└── val```
### Evaluate One-shot Segmentation
```
# coco
bash scripts/segic_dist.sh 8 dinov2 OUTPUT/all_exps/abs_backbone/dinov2_l --eval --restore-model /your/ckpt/path --eval_datasets coco# fss
bash scripts/segic_dist.sh 8 dinov2 OUTPUT/all_exps/abs_backbone/dinov2_l --eval --restore-model /your/ckpt/path --eval_datasets fss
```### Evaluate Zero-shot Video Object Segmentation
```
# davis-17
bash scripts/segic_dist.sh 8 dinov2 OUTPUT/all_exps/abs_backbone/dinov2_l --eval_vos --vos_data davis17 --restore-model /your/ckpt/path# youtubevos-18
bash scripts/segic_dist.sh 8 dinov2 OUTPUT/all_exps/abs_backbone/dinov2_l --eval_vos --vos_data youtube --restore-model /your/ckpt/path
```### Custom Inference
```
bash scripts/segic_dist.sh 1 dinov2 OUTPUT/all_exps/abs_backbone/dinov2_l --custom_eval --restore-model /your/ckpt/path
```## Acknowledgement
Many thanks to these excellent opensource projects
* [Segment Anything](https://github.com/facebookresearch/segment-anything)
* [SAM-HQ](https://github.com/SysCV/sam-hq)## Citation
If you find this project useful for your research, please use the following BibTeX entry.
```bibtex
@inproceedings{meng2023segic,
title={SEGIC: Unleashing the Emergent Correspondence for In-Context Segmentation},
author={Meng, Lingchen and Lan, Shiyi and Li, Hengduo and Alvarez, Jose M and Wu, Zuxuan and Jiang, Yu-Gang},
journal={ECCV},
year={2024}
}