Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/Microsoft/nni
An open source AutoML toolkit for automate machine learning lifecycle, including feature engineering, neural architecture search, model compression and hyper-parameter tuning.
https://github.com/Microsoft/nni
automated-machine-learning automl bayesian-optimization data-science deep-learning deep-neural-network distributed feature-engineering hyperparameter-optimization hyperparameter-tuning machine-learning machine-learning-algorithms mlops model-compression nas neural-architecture-search neural-network python pytorch tensorflow
Last synced: 3 months ago
JSON representation
An open source AutoML toolkit for automate machine learning lifecycle, including feature engineering, neural architecture search, model compression and hyper-parameter tuning.
- Host: GitHub
- URL: https://github.com/Microsoft/nni
- Owner: microsoft
- License: mit
- Created: 2018-06-01T05:51:44.000Z (over 6 years ago)
- Default Branch: master
- Last Pushed: 2024-07-03T10:55:10.000Z (4 months ago)
- Last Synced: 2024-07-31T05:19:32.120Z (3 months ago)
- Topics: automated-machine-learning, automl, bayesian-optimization, data-science, deep-learning, deep-neural-network, distributed, feature-engineering, hyperparameter-optimization, hyperparameter-tuning, machine-learning, machine-learning-algorithms, mlops, model-compression, nas, neural-architecture-search, neural-network, python, pytorch, tensorflow
- Language: Python
- Homepage: https://nni.readthedocs.io
- Size: 127 MB
- Stars: 13,915
- Watchers: 284
- Forks: 1,808
- Open Issues: 412
-
Metadata Files:
- Readme: README.md
- License: LICENSE
- Citation: CITATION.cff
- Security: SECURITY.md
Awesome Lists containing this project
- awesome-llmops - NNI - parameter tuning. | ![GitHub Badge](https://img.shields.io/github/stars/Microsoft/nni.svg?style=flat-square) | (AutoML / Profiling)
- awesome-production-machine-learning - Neural Network Intelligence - NNI (Neural Network Intelligence) is a toolkit to help users run automated machine learning (AutoML) experiments. (Neural Architecture Search)
- Awesome-AIML-Data-Ops - Neural Network Intelligence - NNI (Neural Network Intelligence) is a toolkit to help users run automated machine learning (AutoML) experiments. (Neural Architecture Search)
- awesome-machine-learning-resources - **[Library
- awesome-production-machine-learning - Neural Network Intelligence - NNI (Neural Network Intelligence) is a toolkit to help users run automated machine learning (AutoML) experiments. (AutoML)
- awesome-AutoML-and-Lightweight-Models - Microsoft/nni
README
[![MIT licensed](https://img.shields.io/badge/license-MIT-brightgreen.svg)](LICENSE)
[![Issues](https://img.shields.io/github/issues-raw/Microsoft/nni.svg)](https://github.com/Microsoft/nni/issues?q=is%3Aissue+is%3Aopen)
[![Bugs](https://img.shields.io/github/issues/Microsoft/nni/bug.svg)](https://github.com/Microsoft/nni/issues?q=is%3Aissue+is%3Aopen+label%3Abug)
[![Pull Requests](https://img.shields.io/github/issues-pr-raw/Microsoft/nni.svg)](https://github.com/Microsoft/nni/pulls?q=is%3Apr+is%3Aopen)
[![Version](https://img.shields.io/github/release/Microsoft/nni.svg)](https://github.com/Microsoft/nni/releases)
[![Documentation Status](https://readthedocs.org/projects/nni/badge/?version=stable)](https://nni.readthedocs.io/en/stable/?badge=stable)
[![](https://img.shields.io/github/contributors-anon/microsoft/nni)](https://github.com/microsoft/nni/graphs/contributors)[](https://nni.readthedocs.io/en/stable)
NNI automates feature engineering, neural architecture search, hyperparameter tuning, and model compression for deep learning. Find the latest features, API, examples and tutorials in our **[official documentation](https://nni.readthedocs.io/) ([简体中文版点这里](https://nni.readthedocs.io/zh/stable))**.
* **New release**: [v3.0 preview is available](https://github.com/microsoft/nni/releases/tag/v3.0rc1) - _released on May-5-2022_
* **New demo available**: [Youtube entry](https://www.youtube.com/channel/UCKcafm6861B2mnYhPbZHavw) | [Bilibili 入口](https://space.bilibili.com/1649051673) - _last updated on June-22-2022_
* **New research paper**: [SparTA: Deep-Learning Model Sparsity via Tensor-with-Sparsity-Attribute](https://www.usenix.org/system/files/osdi22-zheng-ningxin.pdf) - _published in OSDI 2022_
* **New research paper**: [Privacy-preserving Online AutoML for Domain-Specific Face Detection](https://openaccess.thecvf.com/content/CVPR2022/papers/Yan_Privacy-Preserving_Online_AutoML_for_Domain-Specific_Face_Detection_CVPR_2022_paper.pdf) - _published in CVPR 2022_
* **Newly upgraded documentation**: [Doc upgraded](https://nni.readthedocs.io/en/stable)## Installation
See the [NNI installation guide](https://nni.readthedocs.io/en/stable/installation.html) to install from pip, or build from source.
To install the current release:
```
$ pip install nni
```To update NNI to the latest version, add `--upgrade` flag to the above commands.
## NNI capabilities in a glance
Hyperparameter Tuning
Neural Architecture Search
Model Compression
Algorithms
- Exhaustive search
- Heuristic search
- Bayesian optimization
- Multi-trial
- One-shot
- Pruning
- Quantization
Supported Frameworks
Training Services
Tutorials
Supports
- PyTorch
- TensorFlow
- Scikit-learn
- XGBoost
- LightGBM
- MXNet
- Caffe2
- More...
- Local machine
- Remote SSH servers
- Azure Machine Learning (AML)
- Kubernetes Based
- Hybrid training services
- HPO
- NAS
- Compression
## Resources
* [NNI Documentation Homepage](https://nni.readthedocs.io/en/stable)
* [NNI Installation Guide](https://nni.readthedocs.io/en/stable/installation.html)
* [NNI Examples](https://nni.readthedocs.io/en/latest/examples.html)
* [Python API Reference](https://nni.readthedocs.io/en/latest/reference/python_api.html)
* [Releases (Change Log)](https://nni.readthedocs.io/en/latest/release.html)
* [Related Research and Publications](https://nni.readthedocs.io/en/latest/notes/research_publications.html)
* [Youtube Channel of NNI](https://www.youtube.com/channel/UCKcafm6861B2mnYhPbZHavw)
* [Bilibili Space of NNI](https://space.bilibili.com/1649051673)
* [Webinar of Introducing Retiarii: A deep learning exploratory-training framework on NNI](https://note.microsoft.com/MSR-Webinar-Retiarii-Registration-Live.html)
* [Community Discussions](https://github.com/microsoft/nni/discussions)
## Contribution guidelines
If you want to contribute to NNI, be sure to review the [contribution guidelines](https://nni.readthedocs.io/en/stable/notes/contributing.html), which includes instructions of submitting feedbacks, best coding practices, and code of conduct.
We use [GitHub issues](https://github.com/microsoft/nni/issues) to track tracking requests and bugs.
Please use [NNI Discussion](https://github.com/microsoft/nni/discussions) for general questions and new ideas.
For questions of specific use cases, please go to [Stack Overflow](https://stackoverflow.com/questions/tagged/nni).
Participating discussions via the following IM groups is also welcomed.
|Gitter||WeChat|
|----|----|----|
|![image](https://user-images.githubusercontent.com/39592018/80665738-e0574a80-8acc-11ea-91bc-0836dc4cbf89.png)| OR |![image](https://github.com/scarlett2018/nniutil/raw/master/wechat.png)|
Over the past few years, NNI has received thousands of feedbacks on GitHub issues, and pull requests from hundreds of contributors.
We appreciate all contributions from community to make NNI thrive.
## Test status
### Essentials
| Type | Status |
| :---: | :---: |
| Fast test | [![Build Status](https://msrasrg.visualstudio.com/NNIOpenSource/_apis/build/status/fast%20test?branchName=master)](https://msrasrg.visualstudio.com/NNIOpenSource/_build/latest?definitionId=54&branchName=master) |
| Full test - HPO | [![Build Status](https://msrasrg.visualstudio.com/NNIOpenSource/_apis/build/status/full%20test%20-%20HPO?repoName=microsoft%2Fnni&branchName=master)](https://msrasrg.visualstudio.com/NNIOpenSource/_build/latest?definitionId=90&repoName=microsoft%2Fnni&branchName=master) |
| Full test - NAS | [![Build Status](https://msrasrg.visualstudio.com/NNIOpenSource/_apis/build/status/full%20test%20-%20NAS?repoName=microsoft%2Fnni&branchName=master)](https://msrasrg.visualstudio.com/NNIOpenSource/_build/latest?definitionId=89&repoName=microsoft%2Fnni&branchName=master) |
| Full test - compression | [![Build Status](https://msrasrg.visualstudio.com/NNIOpenSource/_apis/build/status/full%20test%20-%20compression?repoName=microsoft%2Fnni&branchName=master)](https://msrasrg.visualstudio.com/NNIOpenSource/_build/latest?definitionId=91&repoName=microsoft%2Fnni&branchName=master) |
### Training services
| Type | Status |
| :---: | :---: |
| Local - linux | [![Build Status](https://msrasrg.visualstudio.com/NNIOpenSource/_apis/build/status/integration%20test%20-%20local%20-%20linux?branchName=master)](https://msrasrg.visualstudio.com/NNIOpenSource/_build/latest?definitionId=92&branchName=master) |
| Local - windows | [![Build Status](https://msrasrg.visualstudio.com/NNIOpenSource/_apis/build/status/integration%20test%20-%20local%20-%20windows?branchName=master)](https://msrasrg.visualstudio.com/NNIOpenSource/_build/latest?definitionId=98&branchName=master) |
| Remote - linux to linux | [![Build Status](https://msrasrg.visualstudio.com/NNIOpenSource/_apis/build/status/integration%20test%20-%20remote%20-%20linux%20to%20linux?branchName=master)](https://msrasrg.visualstudio.com/NNIOpenSource/_build/latest?definitionId=64&branchName=master) |
| Remote - windows to windows | [![Build Status](https://msrasrg.visualstudio.com/NNIOpenSource/_apis/build/status/integration%20test%20-%20remote%20-%20windows%20to%20windows?branchName=master)](https://msrasrg.visualstudio.com/NNIOpenSource/_build/latest?definitionId=99&branchName=master) |
| OpenPAI | [![Build Status](https://msrasrg.visualstudio.com/NNIOpenSource/_apis/build/status/integration%20test%20-%20openpai%20-%20linux?branchName=master)](https://msrasrg.visualstudio.com/NNIOpenSource/_build/latest?definitionId=65&branchName=master) |
| Frameworkcontroller | [![Build Status](https://msrasrg.visualstudio.com/NNIOpenSource/_apis/build/status/integration%20test%20-%20frameworkcontroller?branchName=master)](https://msrasrg.visualstudio.com/NNIOpenSource/_build/latest?definitionId=70&branchName=master) |
| Kubeflow | [![Build Status](https://msrasrg.visualstudio.com/NNIOpenSource/_apis/build/status/integration%20test%20-%20kubeflow?branchName=master)](https://msrasrg.visualstudio.com/NNIOpenSource/_build/latest?definitionId=69&branchName=master) |
| Hybrid | [![Build Status](https://msrasrg.visualstudio.com/NNIOpenSource/_apis/build/status/integration%20test%20-%20hybrid?branchName=master)](https://msrasrg.visualstudio.com/NNIOpenSource/_build/latest?definitionId=79&branchName=master) |
| AzureML | [![Build Status](https://msrasrg.visualstudio.com/NNIOpenSource/_apis/build/status/integration%20test%20-%20aml?branchName=master)](https://msrasrg.visualstudio.com/NNIOpenSource/_build/latest?definitionId=78&branchName=master) |
## Related Projects
Targeting at openness and advancing state-of-art technology, [Microsoft Research (MSR)](https://www.microsoft.com/en-us/research/group/systems-and-networking-research-group-asia/) had also released few other open source projects.
* [OpenPAI](https://github.com/Microsoft/pai) : an open source platform that provides complete AI model training and resource management capabilities, it is easy to extend and supports on-premise, cloud and hybrid environments in various scale.
* [FrameworkController](https://github.com/Microsoft/frameworkcontroller) : an open source general-purpose Kubernetes Pod Controller that orchestrate all kinds of applications on Kubernetes by a single controller.
* [MMdnn](https://github.com/Microsoft/MMdnn) : A comprehensive, cross-framework solution to convert, visualize and diagnose deep neural network models. The "MM" in MMdnn stands for model management and "dnn" is an acronym for deep neural network.
* [SPTAG](https://github.com/Microsoft/SPTAG) : Space Partition Tree And Graph (SPTAG) is an open source library for large scale vector approximate nearest neighbor search scenario.
* [nn-Meter](https://github.com/microsoft/nn-Meter) : An accurate inference latency predictor for DNN models on diverse edge devices.
We encourage researchers and students leverage these projects to accelerate the AI development and research.
## License
The entire codebase is under [MIT license](LICENSE).