Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/MilesCranmer/SymbolicRegression.jl

Distributed High-Performance Symbolic Regression in Julia
https://github.com/MilesCranmer/SymbolicRegression.jl

automl data-science distributed-systems equation-discovery evolutionary-algorithms explainable-ai genetic-algorithm interpretable-ml julia machine-learning sciml symbolic symbolic-computation symbolic-regression

Last synced: about 2 months ago
JSON representation

Distributed High-Performance Symbolic Regression in Julia

Awesome Lists containing this project

README

        

SymbolicRegression.jl searches for symbolic expressions which optimize a particular objective.

https://github.com/MilesCranmer/SymbolicRegression.jl/assets/7593028/f5b68f1f-9830-497f-a197-6ae332c94ee0

| Latest release | Documentation | Forums | Paper |
| :---: | :---: | :---: | :---: |
| [![version](https://juliahub.com/docs/SymbolicRegression/version.svg)](https://juliahub.com/ui/Packages/SymbolicRegression/X2eIS) | [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://astroautomata.com/SymbolicRegression.jl/dev/) | [![Discussions](https://img.shields.io/badge/discussions-github-informational)](https://github.com/MilesCranmer/PySR/discussions) | [![Paper](https://img.shields.io/badge/arXiv-2305.01582-b31b1b)](https://arxiv.org/abs/2305.01582) |

| Build status | Coverage |
| :---: | :---: |
| [![CI](https://github.com/MilesCranmer/SymbolicRegression.jl/workflows/CI/badge.svg)](.github/workflows/CI.yml) | [![Coverage Status](https://coveralls.io/repos/github/MilesCranmer/SymbolicRegression.jl/badge.svg?branch=master)](https://coveralls.io/github/MilesCranmer/SymbolicRegression.jl?branch=master) |

Check out [PySR](https://github.com/MilesCranmer/PySR) for
a Python frontend.
[Cite this software](https://arxiv.org/abs/2305.01582)

**Contents**:

- [Quickstart](#quickstart)
- [MLJ Interface](#mlj-interface)
- [Low-Level Interface](#low-level-interface)
- [Constructing expressions](#constructing-expressions)
- [Exporting to SymbolicUtils.jl](#exporting-to-symbolicutilsjl)
- [Contributors โœจ](#contributors-)
- [Code structure](#code-structure)
- [Search options](#search-options)

## Quickstart

Install in Julia with:

```julia
using Pkg
Pkg.add("SymbolicRegression")
```

### MLJ Interface

The easiest way to use SymbolicRegression.jl
is with [MLJ](https://github.com/alan-turing-institute/MLJ.jl).
Let's see an example:

```julia
import SymbolicRegression: SRRegressor
import MLJ: machine, fit!, predict, report

# Dataset with two named features:
X = (a = rand(500), b = rand(500))

# and one target:
y = @. 2 * cos(X.a * 23.5) - X.b ^ 2

# with some noise:
y = y .+ randn(500) .* 1e-3

model = SRRegressor(
niterations=50,
binary_operators=[+, -, *],
unary_operators=[cos],
)
```

Now, let's create and train this model
on our data:

```julia
mach = machine(model, X, y)

fit!(mach)
```

You will notice that expressions are printed
using the column names of our table. If,
instead of a table-like object,
a simple array is passed
(e.g., `X=randn(100, 2)`),
`x1, ..., xn` will be used for variable names.

Let's look at the expressions discovered:

```julia
report(mach)
```

Finally, we can make predictions with the expressions
on new data:

```julia
predict(mach, X)
```

This will make predictions using the expression
selected by `model.selection_method`,
which by default is a mix of accuracy and complexity.

You can override this selection and select an equation from
the Pareto front manually with:

```julia
predict(mach, (data=X, idx=2))
```

where here we choose to evaluate the second equation.

For fitting multiple outputs, one can use `MultitargetSRRegressor`
(and pass an array of indices to `idx` in `predict` for selecting specific equations).
For a full list of options available to each regressor, see the [API page](https://astroautomata.com/SymbolicRegression.jl/dev/api/).

### Low-Level Interface

The heart of SymbolicRegression.jl is the
`equation_search` function.
This takes a 2D array and attempts
to model a 1D array using analytic functional forms.
**Note:** unlike the MLJ interface,
this assumes column-major input of shape [features, rows].

```julia
import SymbolicRegression: Options, equation_search

X = randn(2, 100)
y = 2 * cos.(X[2, :]) + X[1, :] .^ 2 .- 2

options = Options(
binary_operators=[+, *, /, -],
unary_operators=[cos, exp],
populations=20
)

hall_of_fame = equation_search(
X, y, niterations=40, options=options,
parallelism=:multithreading
)
```

You can view the resultant equations in the dominating Pareto front (best expression
seen at each complexity) with:

```julia
import SymbolicRegression: calculate_pareto_frontier

dominating = calculate_pareto_frontier(hall_of_fame)
```

This is a vector of `PopMember` type - which contains the expression along with the score.
We can get the expressions with:

```julia
trees = [member.tree for member in dominating]
```

Each of these equations is a `Node{T}` type for some constant type `T` (like `Float32`).

You can evaluate a given tree with:

```julia
import SymbolicRegression: eval_tree_array

tree = trees[end]
output, did_succeed = eval_tree_array(tree, X, options)
```

The `output` array will contain the result of the tree at each of the 100 rows.
This `did_succeed` flag detects whether an evaluation was successful, or whether
encountered any NaNs or Infs during calculation (such as, e.g., `sqrt(-1)`).

## Constructing expressions

Expressions are represented as the `Node` type which is developed
in the [DynamicExpressions.jl](https://github.com/SymbolicML/DynamicExpressions.jl/) package.

You can manipulate and construct expressions directly. For example:

```julia
import SymbolicRegression: Options, Node, eval_tree_array

options = Options(;
binary_operators=[+, -, *, ^, /], unary_operators=[cos, exp, sin]
)
x1, x2, x3 = [Node(; feature=i) for i=1:3]
tree = cos(x1 - 3.2 * x2) - x1^3.2
```

This tree has `Float64` constants, so the type of the entire tree
will be promoted to `Node{Float64}`.

We can convert all constants (recursively) to `Float32`:

```julia
float32_tree = convert(Node{Float32}, tree)
```

We can then evaluate this tree on a dataset:

```julia
X = rand(Float32, 3, 100)
output, did_succeed = eval_tree_array(tree, X, options)
```

## Exporting to SymbolicUtils.jl

We can view the equations in the dominating
Pareto frontier with:

```julia
dominating = calculate_pareto_frontier(hall_of_fame)
```

We can convert the best equation
to [SymbolicUtils.jl](https://github.com/JuliaSymbolics/SymbolicUtils.jl)
with the following function:

```julia
import SymbolicRegression: node_to_symbolic

eqn = node_to_symbolic(dominating[end].tree, options)
println(simplify(eqn*5 + 3))
```

We can also print out the full pareto frontier like so:

```julia
import SymbolicRegression: compute_complexity, string_tree

println("Complexity\tMSE\tEquation")

for member in dominating
complexity = compute_complexity(member, options)
loss = member.loss
string = string_tree(member.tree, options)

println("$(complexity)\t$(loss)\t$(string)")
end
```

## Contributors โœจ

We are eager to welcome new contributors!
If you have an idea for a new feature, don't hesitate to share it on the [issues](https://github.com/MilesCranmer/SymbolicRegression.jl/issues) page or [forums](https://github.com/MilesCranmer/PySR/discussions).



Mark Kittisopikul
Mark Kittisopikul

๐Ÿ’ป ๐Ÿ’ก ๐Ÿš‡ ๐Ÿ“ฆ ๐Ÿ“ฃ ๐Ÿ‘€ ๐Ÿ”ง โš ๏ธ
T Coxon
T Coxon

๐Ÿ› ๐Ÿ’ป ๐Ÿ”Œ ๐Ÿ’ก ๐Ÿš‡ ๐Ÿšง ๐Ÿ‘€ ๐Ÿ”ง โš ๏ธ ๐Ÿ““
Dhananjay Ashok
Dhananjay Ashok

๐Ÿ’ป ๐ŸŒ ๐Ÿ’ก ๐Ÿšง โš ๏ธ
Johan Blรฅbรคck
Johan Blรฅbรคck

๐Ÿ› ๐Ÿ’ป ๐Ÿ’ก ๐Ÿšง ๐Ÿ“ฃ ๐Ÿ‘€ โš ๏ธ ๐Ÿ““
JuliusMartensen
JuliusMartensen

๐Ÿ› ๐Ÿ’ป ๐Ÿ“– ๐Ÿ”Œ ๐Ÿ’ก ๐Ÿš‡ ๐Ÿšง ๐Ÿ“ฆ ๐Ÿ“ฃ ๐Ÿ‘€ ๐Ÿ”ง ๐Ÿ““
ngam
ngam

๐Ÿ’ป ๐Ÿš‡ ๐Ÿ“ฆ ๐Ÿ‘€ ๐Ÿ”ง โš ๏ธ
Kaze Wong
Kaze Wong

๐Ÿ› ๐Ÿ’ป ๐Ÿ’ก ๐Ÿš‡ ๐Ÿšง ๐Ÿ“ฃ ๐Ÿ‘€ ๐Ÿ”ฌ ๐Ÿ““
Christopher Rackauckas
Christopher Rackauckas

๐Ÿ› ๐Ÿ’ป ๐Ÿ”Œ ๐Ÿ’ก ๐Ÿš‡ ๐Ÿ“ฃ ๐Ÿ‘€ ๐Ÿ”ฌ ๐Ÿ”ง โš ๏ธ ๐Ÿ““


Patrick Kidger
Patrick Kidger

๐Ÿ› ๐Ÿ’ป ๐Ÿ“– ๐Ÿ”Œ ๐Ÿ’ก ๐Ÿšง ๐Ÿ“ฃ ๐Ÿ‘€ ๐Ÿ”ฌ ๐Ÿ”ง โš ๏ธ ๐Ÿ““
Okon Samuel
Okon Samuel

๐Ÿ› ๐Ÿ’ป ๐Ÿ“– ๐Ÿšง ๐Ÿ’ก ๐Ÿš‡ ๐Ÿ‘€ โš ๏ธ ๐Ÿ““
William Booth-Clibborn
William Booth-Clibborn

๐Ÿ’ป ๐ŸŒ ๐Ÿ“– ๐Ÿ““ ๐Ÿšง ๐Ÿ‘€ ๐Ÿ”ง โš ๏ธ
Pablo Lemos
Pablo Lemos

๐Ÿ› ๐Ÿ’ก ๐Ÿ“ฃ ๐Ÿ‘€ ๐Ÿ”ฌ ๐Ÿ““
Jerry Ling
Jerry Ling

๐Ÿ› ๐Ÿ’ป ๐Ÿ“– ๐ŸŒ ๐Ÿ’ก ๐Ÿ“ฃ ๐Ÿ‘€ ๐Ÿ““
Charles Fox
Charles Fox

๐Ÿ› ๐Ÿ’ป ๐Ÿ’ก ๐Ÿšง ๐Ÿ“ฃ ๐Ÿ‘€ ๐Ÿ”ฌ ๐Ÿ““
Johann Brehmer
Johann Brehmer

๐Ÿ’ป ๐Ÿ“– ๐Ÿ’ก ๐Ÿ“ฃ ๐Ÿ‘€ ๐Ÿ”ฌ โš ๏ธ ๐Ÿ““
Marius Millea
Marius Millea

๐Ÿ’ป ๐Ÿ’ก ๐Ÿ“ฃ ๐Ÿ‘€ ๐Ÿ““


Coba
Coba

๐Ÿ› ๐Ÿ’ป ๐Ÿ’ก ๐Ÿ‘€ ๐Ÿ““
Pietro Monticone
Pietro Monticone

๐Ÿ› ๐Ÿ“– ๐Ÿ’ก
Mateusz Kubica
Mateusz Kubica

๐Ÿ“– ๐Ÿ’ก
Jay Wadekar
Jay Wadekar

๐Ÿ› ๐Ÿ’ก ๐Ÿ“ฃ ๐Ÿ”ฌ
Anthony Blaom, PhD
Anthony Blaom, PhD

๐Ÿš‡ ๐Ÿ’ก ๐Ÿ‘€
Jgmedina95
Jgmedina95

๐Ÿ› ๐Ÿ’ก ๐Ÿ‘€
Michael Abbott
Michael Abbott

๐Ÿ’ป ๐Ÿ’ก ๐Ÿ‘€ ๐Ÿ”ง
Oscar Smith
Oscar Smith

๐Ÿ’ป ๐Ÿ’ก


Eric Hanson
Eric Hanson

๐Ÿ’ก ๐Ÿ“ฃ ๐Ÿ““
Henrique Becker
Henrique Becker

๐Ÿ’ป ๐Ÿ’ก ๐Ÿ‘€
qwertyjl
qwertyjl

๐Ÿ› ๐Ÿ“– ๐Ÿ’ก ๐Ÿ““
Rik Huijzer
Rik Huijzer

๐Ÿ’ก ๐Ÿš‡
Hongyu Wang
Hongyu Wang

๐Ÿ’ก ๐Ÿ“ฃ ๐Ÿ”ฌ
Saurav Maheshkar
Saurav Maheshkar

๐Ÿ”ง

## Code structure

SymbolicRegression.jl is organized roughly as follows.
Rounded rectangles indicate objects, and rectangles indicate functions.

> (if you can't see this diagram being rendered, try pasting it into [mermaid-js.github.io/mermaid-live-editor](https://mermaid-js.github.io/mermaid-live-editor))

```mermaid
flowchart TB
op([Options])
d([Dataset])
op --> ES
d --> ES
subgraph ES[equation_search]
direction TB
IP[sr_spawner]
IP --> p1
IP --> p2
subgraph p1[Thread 1]
direction LR
pop1([Population])
pop1 --> src[s_r_cycle]
src --> opt[optimize_and_simplify_population]
opt --> pop1
end
subgraph p2[Thread 2]
direction LR
pop2([Population])
pop2 --> src2[s_r_cycle]
src2 --> opt2[optimize_and_simplify_population]
opt2 --> pop2
end
pop1 --> hof
pop2 --> hof
hof([HallOfFame])
hof --> migration
pop1 <-.-> migration
pop2 <-.-> migration
migration[migrate!]
end
ES --> output([HallOfFame])
```

The `HallOfFame` objects store the expressions with the lowest loss seen at each complexity.

The dependency structure of the code itself is as follows:

```mermaid
stateDiagram-v2
AdaptiveParsimony --> Mutate
AdaptiveParsimony --> Population
AdaptiveParsimony --> RegularizedEvolution
AdaptiveParsimony --> SingleIteration
AdaptiveParsimony --> SymbolicRegression
CheckConstraints --> Mutate
CheckConstraints --> SymbolicRegression
Complexity --> CheckConstraints
Complexity --> HallOfFame
Complexity --> LossFunctions
Complexity --> Mutate
Complexity --> Population
Complexity --> SearchUtils
Complexity --> SingleIteration
Complexity --> SymbolicRegression
ConstantOptimization --> Mutate
ConstantOptimization --> SingleIteration
Core --> AdaptiveParsimony
Core --> CheckConstraints
Core --> Complexity
Core --> ConstantOptimization
Core --> HallOfFame
Core --> InterfaceDynamicExpressions
Core --> LossFunctions
Core --> Migration
Core --> Mutate
Core --> MutationFunctions
Core --> PopMember
Core --> Population
Core --> Recorder
Core --> RegularizedEvolution
Core --> SearchUtils
Core --> SingleIteration
Core --> SymbolicRegression
Dataset --> Core
HallOfFame --> SearchUtils
HallOfFame --> SingleIteration
HallOfFame --> SymbolicRegression
InterfaceDynamicExpressions --> LossFunctions
InterfaceDynamicExpressions --> SymbolicRegression
LossFunctions --> ConstantOptimization
LossFunctions --> HallOfFame
LossFunctions --> Mutate
LossFunctions --> PopMember
LossFunctions --> Population
LossFunctions --> SymbolicRegression
Migration --> SymbolicRegression
Mutate --> RegularizedEvolution
MutationFunctions --> Mutate
MutationFunctions --> Population
MutationFunctions --> SymbolicRegression
Operators --> Core
Operators --> Options
Options --> Core
OptionsStruct --> Core
OptionsStruct --> Options
PopMember --> ConstantOptimization
PopMember --> HallOfFame
PopMember --> Migration
PopMember --> Mutate
PopMember --> Population
PopMember --> RegularizedEvolution
PopMember --> SingleIteration
PopMember --> SymbolicRegression
Population --> Migration
Population --> RegularizedEvolution
Population --> SearchUtils
Population --> SingleIteration
Population --> SymbolicRegression
ProgramConstants --> Core
ProgramConstants --> Dataset
ProgressBars --> SearchUtils
ProgressBars --> SymbolicRegression
Recorder --> Mutate
Recorder --> RegularizedEvolution
Recorder --> SingleIteration
Recorder --> SymbolicRegression
RegularizedEvolution --> SingleIteration
SearchUtils --> SymbolicRegression
SingleIteration --> SymbolicRegression
Utils --> CheckConstraints
Utils --> ConstantOptimization
Utils --> Options
Utils --> PopMember
Utils --> SingleIteration
Utils --> SymbolicRegression
```

Bash command to generate dependency structure from `src` directory (requires `vim-stream`):

```bash
echo 'stateDiagram-v2'
IFS=$'\n'
for f in *.jl; do
for line in $(cat $f | grep -e 'import \.\.' -e 'import \.'); do
echo $(echo $line | vims -s 'dwf:d$' -t '%s/^\.*//g' '%s/Module//g') $(basename "$f" .jl);
done;
done | vims -l 'f a--> ' | sort
```

## Search options

See https://astroautomata.com/SymbolicRegression.jl/stable/api/#Options