Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/MilesCranmer/awesome-ml-demos
Curated list of interactive ML demos
https://github.com/MilesCranmer/awesome-ml-demos
List: awesome-ml-demos
awesome awesome-list interactive javascript lists machine-learning resources visualization
Last synced: 11 days ago
JSON representation
Curated list of interactive ML demos
- Host: GitHub
- URL: https://github.com/MilesCranmer/awesome-ml-demos
- Owner: MilesCranmer
- Created: 2023-09-18T09:29:15.000Z (about 1 year ago)
- Default Branch: master
- Last Pushed: 2023-11-21T23:44:40.000Z (12 months ago)
- Last Synced: 2024-05-22T11:10:43.227Z (6 months ago)
- Topics: awesome, awesome-list, interactive, javascript, lists, machine-learning, resources, visualization
- Homepage:
- Size: 10.7 KB
- Stars: 329
- Watchers: 9
- Forks: 12
- Open Issues: 2
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Awesome Machine Learning Demos [![Awesome](https://awesome.re/badge.svg)](https://awesome.re)
A curated list of interactive demonstrations in machine learning and ML-adjacent topics
- Probabilistic techniques
- Chi Feng's MCMC demo [[code]](https://github.com/chi-feng/mcmc-demo) [[demo]](https://chi-feng.github.io/mcmc-demo/app.html)
- Yarin Gal's MC Dropout Visualization [[code]](https://github.com/yaringal/DropoutUncertaintyDemos) [[demo]](https://www.cs.ox.ac.uk/people/yarin.gal/website/blog_3d801aa532c1ce.html)
- Multi-layer perceptrons
- TensorFlow neural network playground [[code]](https://github.com/tensorflow/playground) [[demo]](https://playground.tensorflow.org/)
- Convolutional neural networks
- Adam Harley's CNN visualizations [[code]](https://github.com/aharley/nn_vis) [[demo]](https://adamharley.com/nn_vis/)
- Zijie Wang et al.'s CNN explainer [[code]](https://github.com/poloclub/cnn-explainer) [[demo]](https://poloclub.github.io/cnn-explainer/)
- OpenAI Microscope [[demo]](https://microscope.openai.com/models)
- Unsupervised learning and preprocessing
- K-means clustering [[demo]](https://www.naftaliharris.com/blog/visualizing-k-means-clustering/)