Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/ModelOriented/EloML
R package EloML: Elo rating system for machine learning models
https://github.com/ModelOriented/EloML
Last synced: 2 months ago
JSON representation
R package EloML: Elo rating system for machine learning models
- Host: GitHub
- URL: https://github.com/ModelOriented/EloML
- Owner: ModelOriented
- Created: 2019-09-04T19:21:29.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2022-06-17T16:24:39.000Z (over 2 years ago)
- Last Synced: 2024-08-03T21:05:10.230Z (6 months ago)
- Language: R
- Homepage: https://modeloriented.github.io/EloML/
- Size: 777 KB
- Stars: 24
- Watchers: 7
- Forks: 3
- Open Issues: 3
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- AwesomeResponsibleAI - EloML
README
# Elo rating system for Machine Learning models
[![CRAN\_Status\_Badge](http://www.r-pkg.org/badges/version/EloML)](https://cran.r-project.org/package=EloML)
[![Build
Status](https://travis-ci.org/ModelOriented/EloML.svg?branch=master)](https://travis-ci.org/ModelOriented/EloML)
[![Coverage
Status](https://img.shields.io/codecov/c/github/modeloriented/EloML/master.svg)](https://codecov.io/github/modeloriented/EloML?branch=master)## Overview
The `EloML` package provides Elo rating system for machine learning models. Elo Predictive Power (EPP) score helps to assess model performance based Elo ranking system.
Find more in the [EPP: interpretable score of model predictive power](https://arxiv.org/abs/1908.09213) arxiv paper.
## Installation
Installation time should not exceed 1 minute.
```r
# Install the the development version from GitHub:
# install.packages("devtools")
devtools::install_github("ModelOriented/EloML")
```## Usage
The following example takes less than 20 seconds to complete.
Load `EloML` library and benchmark data. In the example we use the data frame `auc_data` from the `EloML` package. The data used for EPP calculations should be a data frame, where first 3 columns correspond to: Player (`model`), Round (`split`), Score (`auc`).
```{r}
library(EloML)
data(auc_scores)head(auc_scores)
# model split auc
# 1 catboost_1 1 0.9824724
# 2 catboost_1 2 0.9820267
# 3 catboost_1 3 0.9801000
# 4 catboost_1 4 0.9848932
# 5 catboost_1 5 0.9845456
# 6 catboost_1 6 0.9858062```
To calculate EPP use `calculate_epp` function. For more options see help of the function `?calculate_epp`.
```{r}
calculate_epp(auc_scores)# Head of Players EPP:
# player epp
# 1 catboost_1 -0.793627
# 2 catboost_2 2.915507
# 3 catboost_3 -1.990134
# 4 gbm_1 -20.381584
# 5 gbm_10 1.664303
# 6 gbm_11 2.714073
# Type of estimation: glmnet
```