Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/MolecularAI/aizynthfinder
A tool for retrosynthetic planning
https://github.com/MolecularAI/aizynthfinder
astrazeneca chemical-reactions cheminformatics monte-carlo-tree-search neural-networks reaction-informatics
Last synced: 3 months ago
JSON representation
A tool for retrosynthetic planning
- Host: GitHub
- URL: https://github.com/MolecularAI/aizynthfinder
- Owner: MolecularAI
- License: mit
- Created: 2020-06-11T12:57:07.000Z (over 4 years ago)
- Default Branch: master
- Last Pushed: 2024-04-30T15:56:34.000Z (9 months ago)
- Last Synced: 2024-05-06T00:03:26.209Z (9 months ago)
- Topics: astrazeneca, chemical-reactions, cheminformatics, monte-carlo-tree-search, neural-networks, reaction-informatics
- Language: Python
- Homepage: https://molecularai.github.io/aizynthfinder/
- Size: 3.73 MB
- Stars: 536
- Watchers: 29
- Forks: 124
- Open Issues: 9
-
Metadata Files:
- Readme: README.md
- Changelog: CHANGELOG.md
- License: LICENSE
- Citation: CITATION.cff
Awesome Lists containing this project
- awesome-biochem-ai - AiZynthFinder (2020)
- top-pharma50 - **MolecularAI/aizynthfinder** - reactions`, `cheminformatics`, `monte-carlo-tree-search`, `neural-networks`, `reaction-informatics`<br><img src='https://github.com/HubTou/topgh/blob/main/icons/gstars.png'> 548 <img src='https://github.com/HubTou/topgh/blob/main/icons/forks.png'> 125 <img src='https://github.com/HubTou/topgh/blob/main/icons/code.png'> Python <img src='https://github.com/HubTou/topgh/blob/main/icons/license.png'> MIT License <img src='https://github.com/HubTou/topgh/blob/main/icons/last.png'> 2024-06-03 13:34:33 | (Ranked by starred repositories)
- awesome-python-chemistry - aizynthfinder - A tool for retrosynthetic planning. (General Chemistry)
- top-life-sciences - **MolecularAI/aizynthfinder** - reactions`, `cheminformatics`, `monte-carlo-tree-search`, `neural-networks`, `reaction-informatics`<br><img src='https://github.com/HubTou/topgh/blob/main/icons/gstars.png'> 548 <img src='https://github.com/HubTou/topgh/blob/main/icons/forks.png'> 125 <img src='https://github.com/HubTou/topgh/blob/main/icons/code.png'> Python <img src='https://github.com/HubTou/topgh/blob/main/icons/license.png'> MIT License <img src='https://github.com/HubTou/topgh/blob/main/icons/last.png'> 2024-06-03 13:34:33 | (Ranked by starred repositories)
README
# AiZynthFinder
[![License](https://img.shields.io/github/license/MolecularAI/aizynthfinder)](https://github.com/MolecularAI/aizynthfinder/blob/master/LICENSE)
[![Tests](https://github.com/MolecularAI/aizynthfinder/workflows/tests/badge.svg)](https://github.com/MolecularAI/aizynthfinder/actions?workflow=tests)
[![codecov](https://codecov.io/gh/MolecularAI/aizynthfinder/branch/master/graph/badge.svg)](https://codecov.io/gh/MolecularAI/aizynthfinder)
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/python/black)
[![version](https://img.shields.io/github/v/release/MolecularAI/aizynthfinder)](https://github.com/MolecularAI/aizynthfinder/releases)
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/MolecularAI/aizynthfinder/blob/master/contrib/notebook.ipynb)AiZynthFinder is a tool for retrosynthetic planning. The default algorithm is based on a Monte Carlo tree search that recursively breaks down a molecule to purchasable precursors. The tree search is guided by a policy that suggests possible precursors by utilizing a neural network trained on a library of known reaction templates. This setup is completely customizable as the tool
supports multiple search algorithms and expansion policies.An introduction video can be found here: [https://youtu.be/r9Dsxm-mcgA](https://youtu.be/r9Dsxm-mcgA)
## Prerequisites
Before you begin, ensure you have met the following requirements:
* Linux, Windows or macOS platforms are supported - as long as the dependencies are supported on these platforms.
* You have installed [anaconda](https://www.anaconda.com/) or [miniconda](https://docs.conda.io/en/latest/miniconda.html) with python 3.9 - 3.11
The tool has been developed on a Linux platform, but the software has been tested on Windows 10 and macOS Catalina.
## Installation
### For end-users
First time, execute the following command in a console or an Anaconda prompt
conda create "python>=3.9,<3.11" -n aizynth-env
To install, activate the environment and install the package using pypi
conda activate aizynth-env
python -m pip install aizynthfinder[all]for a smaller package, without all the functionality, you can also type
python -m pip install aizynthfinder
### For developers
First clone the repository using Git.
Then execute the following commands in the root of the repository
conda env create -f env-dev.yml
conda activate aizynth-dev
poetry install --all-extrasthe `aizynthfinder` package is now installed in editable mode.
## Usage
The tool will install the `aizynthcli` and `aizynthapp` tools
as interfaces to the algorithm:aizynthcli --config config_local.yml --smiles smiles.txt
aizynthapp --config config_local.ymlConsult the documentation [here](https://molecularai.github.io/aizynthfinder/) for more information.
To use the tool you need
1. A stock file
2. A trained expansion policy network
3. A trained filter policy network (optional)Such files can be downloaded from [figshare](https://figshare.com/articles/AiZynthFinder_a_fast_robust_and_flexible_open-source_software_for_retrosynthetic_planning/12334577) and [here](https://figshare.com/articles/dataset/A_quick_policy_to_filter_reactions_based_on_feasibility_in_AI-guided_retrosynthetic_planning/13280507) or they can be downloaded automatically using
```
download_public_data my_folder
```where ``my_folder`` is the folder that you want download to.
This will create a ``config.yml`` file that you can use with either ``aizynthcli`` or ``aizynthapp``.## Development
### Testing
Tests uses the ``pytest`` package, and is installed by `poetry`
Run the tests using:
pytest -v
The full command run on the CI server is available through an `invoke` command
invoke full-tests
### Documentation generation
The documentation is generated by Sphinx from hand-written tutorials and docstrings
The HTML documentation can be generated by
invoke build-docs
## Contributing
We welcome contributions, in the form of issues or pull requests.
If you have a question or want to report a bug, please submit an issue.
To contribute with code to the project, follow these steps:
1. Fork this repository.
2. Create a branch: `git checkout -b `.
3. Make your changes and commit them: `git commit -m ''`
4. Push to the remote branch: `git push`
5. Create the pull request.Please use ``black`` package for formatting, and follow ``pep8`` style guide.
## Contributors
* [@SGenheden](https://www.github.com/SGenheden)
* [@lakshidaa](https://github.com/Lakshidaa)
* [@helenlai](https://github.com/helenlai)
* [@EBjerrum](https://www.github.com/EBjerrum)
* [@A-Thakkar](https://www.github.com/A-Thakkar)
* [@benteb](https://www.github.com/benteb)The contributors have limited time for support questions, but please do not hesitate to submit an issue (see above).
## License
The software is licensed under the MIT license (see LICENSE file), and is free and provided as-is.
## References
1. Thakkar A, Kogej T, Reymond J-L, et al (2019) Datasets and their influence on the development of computer assisted synthesis planning tools in the pharmaceutical domain. Chem Sci. https://doi.org/10.1039/C9SC04944D
2. Genheden S, Thakkar A, Chadimova V, et al (2020) AiZynthFinder: a fast, robust and flexible open-source software for retrosynthetic planning. ChemRxiv. Preprint. https://doi.org/10.26434/chemrxiv.12465371.v1