Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/MorvanZhou/Reinforcement-learning-with-tensorflow

Simple Reinforcement learning tutorials, 莫烦Python 中文AI教学
https://github.com/MorvanZhou/Reinforcement-learning-with-tensorflow

a3c actor-critic asynchronous-advantage-actor-critic ddpg deep-deterministic-policy-gradient deep-q-network double-dqn dqn dueling-dqn machine-learning policy-gradient ppo prioritized-replay proximal-policy-optimization q-learning reinforcement-learning sarsa sarsa-lambda tensorflow-tutorials tutorial

Last synced: 3 days ago
JSON representation

Simple Reinforcement learning tutorials, 莫烦Python 中文AI教学

Awesome Lists containing this project

README

        






# Reinforcement Learning Methods and Tutorials

In these tutorials for reinforcement learning, it covers from the basic RL algorithms to advanced algorithms developed recent years.

**If you speak Chinese, visit [莫烦 Python](https://mofanpy.com) or my [Youtube channel](https://www.youtube.com/channel/UCdyjiB5H8Pu7aDTNVXTTpcg) for more.**

**As many requests about making these tutorials available in English, please find them in this playlist:** ([https://www.youtube.com/playlist?list=PLXO45tsB95cIplu-fLMpUEEZTwrDNh6Ba](https://www.youtube.com/playlist?list=PLXO45tsB95cIplu-fLMpUEEZTwrDNh6Ba))

# Table of Contents

* Tutorials
* [Simple entry example](contents/1_command_line_reinforcement_learning)
* [Q-learning](contents/2_Q_Learning_maze)
* [Sarsa](contents/3_Sarsa_maze)
* [Sarsa(lambda)](contents/4_Sarsa_lambda_maze)
* [Deep Q Network (DQN)](contents/5_Deep_Q_Network)
* [Using OpenAI Gym](contents/6_OpenAI_gym)
* [Double DQN](contents/5.1_Double_DQN)
* [DQN with Prioitized Experience Replay](contents/5.2_Prioritized_Replay_DQN)
* [Dueling DQN](contents/5.3_Dueling_DQN)
* [Policy Gradients](contents/7_Policy_gradient_softmax)
* [Actor-Critic](contents/8_Actor_Critic_Advantage)
* [Deep Deterministic Policy Gradient (DDPG)](contents/9_Deep_Deterministic_Policy_Gradient_DDPG)
* [A3C](contents/10_A3C)
* [Dyna-Q](contents/11_Dyna_Q)
* [Proximal Policy Optimization (PPO)](contents/12_Proximal_Policy_Optimization)
* [Curiosity Model](/contents/Curiosity_Model), [Random Network Distillation (RND)](/contents/Curiosity_Model/Random_Network_Distillation.py)
* [Some of my experiments](experiments)
* [2D Car](experiments/2D_car)
* [Robot arm](experiments/Robot_arm)
* [BipedalWalker](experiments/Solve_BipedalWalker)
* [LunarLander](experiments/Solve_LunarLander)

# Some RL Networks
### [Deep Q Network](contents/5_Deep_Q_Network)



### [Double DQN](contents/5.1_Double_DQN)



### [Dueling DQN](contents/5.3_Dueling_DQN)



### [Actor Critic](contents/8_Actor_Critic_Advantage)



### [Deep Deterministic Policy Gradient](contents/9_Deep_Deterministic_Policy_Gradient_DDPG)



### [A3C](contents/10_A3C)



### [Proximal Policy Optimization (PPO)](contents/12_Proximal_Policy_Optimization)



### [Curiosity Model](/contents/Curiosity_Model)



# Donation

*If this does help you, please consider donating to support me for better tutorials. Any contribution is greatly appreciated!*



Paypal



Patreon