Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/NFFT/ANOVAapprox.jl
Approximation Package for High-Dimensional Functions in Julia
https://github.com/NFFT/ANOVAapprox.jl
approximation julia
Last synced: 3 months ago
JSON representation
Approximation Package for High-Dimensional Functions in Julia
- Host: GitHub
- URL: https://github.com/NFFT/ANOVAapprox.jl
- Owner: NFFT
- License: gpl-3.0
- Created: 2020-10-09T07:48:22.000Z (about 4 years ago)
- Default Branch: main
- Last Pushed: 2024-06-01T12:46:07.000Z (5 months ago)
- Last Synced: 2024-06-23T04:56:37.953Z (5 months ago)
- Topics: approximation, julia
- Language: Julia
- Homepage:
- Size: 399 KB
- Stars: 0
- Watchers: 10
- Forks: 1
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-sciml - NFFT/ANOVAapprox.jl: Approximation Package for High-Dimensional Functions in Julia
README
# ANOVAapprox.jl
[![](https://img.shields.io/badge/docs-stable-blue.svg)](https://nfft.github.io/ANOVAapprox.jl/stable)
[![](https://img.shields.io/badge/docs-dev-blue.svg)](https://nfft.github.io/ANOVAapprox.jl/dev)
[![ci](https://github.com/NFFT/ANOVAapprox.jl/actions/workflows/ci.yml/badge.svg)](https://github.com/NFFT/ANOVAapprox.jl/actions?query=workflow%3ACI+branch%3Amain)
[![codecov](https://codecov.io/gh/NFFT/ANOVAapprox.jl/branch/main/graph/badge.svg?token=5RUDL3Z3S5)](https://codecov.io/gh/NFFT/ANOVAapprox.jl)
[![Aqua QA](https://img.shields.io/badge/Aqua.jl-%F0%9F%8C%A2-aqua.svg)](https://github.com/JuliaTesting/Aqua.jl)
[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.5657976.svg)](https://doi.org/10.5281/zenodo.5657976)This package provides a framework for the method ANOVAapprox to approximate high-dimensional functions with a low superposition dimension or a sparse ANOVA decomposition from scattered data. The method has been dicussed and applied in the following articles/preprints:
- D. Potts and M. Schmischke
Interpretable transformed ANOVA approximation on the example of the prevention of forest fires
arXiv, PDF - F. Bartel, D. Potts und M. Schmischke
Grouped transformations and Regularization in high-dimensional explainable ANOVA approximation
SIAM Journal on Scientific Computing (accepted)
arXiv, PDF - D. Potts and M. Schmischke
Interpretable approximation of high-dimensional data
SIAM Journal on Mathematics of Data Science (accepted)
arXiv, PDF, Software - D. Potts and M. Schmischke
Learning multivariate functions with low-dimensional structures using polynomial bases
Journal of Computational and Applied Mathematics 403, 113821, 2021
DOI, arXiv, PDF - D. Potts and M. Schmischke
Approximation of high-dimensional periodic functions with Fourier-based methods
SIAM Journal on Numerical Analysis 59 (5), 2393-2429, 2021
DOI, arXiv, PDF - L. Lippert, D. Potts and T. Ullrich
Fast Hyperbolic Wavelet Regression meets ANOVA
ArXiv: 2108.13197
arXiv, PDF
`ANOVAapprox.jl` provides the following functionality:
- approximation of high-dimensional periodic and nonperiodic functions with a sparse ANOVA decomposition
- analysis tools for interpretability (global sensitvitiy indices, attribute ranking, shapley values)
## Getting started
In Julia you can get started by typing
```julia
] add ANOVAapprox
```
then checkout the [documentation](https://nfft.github.io/ANOVAapprox.jl/stable/).