Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/NFFT/ANOVAapprox.jl

Approximation Package for High-Dimensional Functions in Julia
https://github.com/NFFT/ANOVAapprox.jl

approximation julia

Last synced: 3 months ago
JSON representation

Approximation Package for High-Dimensional Functions in Julia

Awesome Lists containing this project

README

        

# ANOVAapprox.jl

[![](https://img.shields.io/badge/docs-stable-blue.svg)](https://nfft.github.io/ANOVAapprox.jl/stable)
[![](https://img.shields.io/badge/docs-dev-blue.svg)](https://nfft.github.io/ANOVAapprox.jl/dev)
[![ci](https://github.com/NFFT/ANOVAapprox.jl/actions/workflows/ci.yml/badge.svg)](https://github.com/NFFT/ANOVAapprox.jl/actions?query=workflow%3ACI+branch%3Amain)
[![codecov](https://codecov.io/gh/NFFT/ANOVAapprox.jl/branch/main/graph/badge.svg?token=5RUDL3Z3S5)](https://codecov.io/gh/NFFT/ANOVAapprox.jl)
[![Aqua QA](https://img.shields.io/badge/Aqua.jl-%F0%9F%8C%A2-aqua.svg)](https://github.com/JuliaTesting/Aqua.jl)
[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.5657976.svg)](https://doi.org/10.5281/zenodo.5657976)

This package provides a framework for the method ANOVAapprox to approximate high-dimensional functions with a low superposition dimension or a sparse ANOVA decomposition from scattered data. The method has been dicussed and applied in the following articles/preprints:


  • D. Potts and M. Schmischke

    Interpretable transformed ANOVA approximation on the example of the prevention of forest fires

    arXiv, PDF

  • F. Bartel, D. Potts und M. Schmischke

    Grouped transformations and Regularization in high-dimensional explainable ANOVA approximation

    SIAM Journal on Scientific Computing (accepted)

    arXiv, PDF

  • D. Potts and M. Schmischke

    Interpretable approximation of high-dimensional data

    SIAM Journal on Mathematics of Data Science (accepted)

    arXiv, PDF, Software

  • D. Potts and M. Schmischke

    Learning multivariate functions with low-dimensional structures using polynomial bases

    Journal of Computational and Applied Mathematics 403, 113821, 2021

    DOI, arXiv, PDF

  • D. Potts and M. Schmischke

    Approximation of high-dimensional periodic functions with Fourier-based methods

    SIAM Journal on Numerical Analysis 59 (5), 2393-2429, 2021

    DOI, arXiv, PDF

  • L. Lippert, D. Potts and T. Ullrich

    Fast Hyperbolic Wavelet Regression meets ANOVA

    ArXiv: 2108.13197

    arXiv, PDF

`ANOVAapprox.jl` provides the following functionality:
- approximation of high-dimensional periodic and nonperiodic functions with a sparse ANOVA decomposition
- analysis tools for interpretability (global sensitvitiy indices, attribute ranking, shapley values)

## Getting started

In Julia you can get started by typing

```julia
] add ANOVAapprox
```

then checkout the [documentation](https://nfft.github.io/ANOVAapprox.jl/stable/).