Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/NLPScott/bert-Chinese-classification-task
bert中文分类实践
https://github.com/NLPScott/bert-Chinese-classification-task
Last synced: 3 months ago
JSON representation
bert中文分类实践
- Host: GitHub
- URL: https://github.com/NLPScott/bert-Chinese-classification-task
- Owner: NLPScott
- Created: 2018-11-26T10:21:25.000Z (about 6 years ago)
- Default Branch: master
- Last Pushed: 2018-12-11T07:10:49.000Z (about 6 years ago)
- Last Synced: 2024-08-02T08:09:55.706Z (6 months ago)
- Language: Python
- Size: 454 KB
- Stars: 733
- Watchers: 30
- Forks: 223
- Open Issues: 19
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- awesome-bert - NLPScott/bert-Chinese-classification-task
- awesome-transformer-nlp - NLPScott/bert-Chinese-classification-task - BERT Chinese classification practice. (Tasks / Classification)
README
# bert-Chinese-classification-task
bert中文分类实践在run_classifier_word.py中添加NewsProcessor,即新闻的预处理读入部分 \
在main方法中添加news类型数据处理label \
processors = { \
"cola": ColaProcessor,\
"mnli": MnliProcessor,\
"mrpc": MrpcProcessor,\
"news": NewsProcessor,\
}
download_glue_data.py 提供glue_data下面其他的bert论文公测glue数据下载data目录下是news数据的样例
export GLUE_DIR=/search/odin/bert/extract_code/glue_data \
export BERT_BASE_DIR=/search/odin/bert/chinese_L-12_H-768_A-12/ \
export BERT_PYTORCH_DIR=/search/odin/bert/chinese_L-12_H-768_A-12/python run_classifier_word.py \
--task_name NEWS \
--do_train \
--do_eval \
--data_dir $GLUE_DIR/NewsAll/ \
--vocab_file $BERT_BASE_DIR/vocab.txt \
--bert_config_file $BERT_BASE_DIR/bert_config.json \
--init_checkpoint $BERT_PYTORCH_DIR/pytorch_model.bin \
--max_seq_length 256 \
--train_batch_size 32 \
--learning_rate 2e-5 \
--num_train_epochs 3.0 \
--output_dir ./newsAll_output/ \
--local_rank 3
中文分类任务实践实验中对中文34个topic进行实践(包括:时政,娱乐,体育等),在对run_classifier.py代码中的预处理环节需要加入NewsProcessor模块,及类似于MrpcProcessor,但是需要对中文的编码进行适当修改,训练数据与测试数据按照4:1进行切割,数据量约80万,单卡GPU资源,训练时间18小时,acc为92.8%
eval_accuracy = 0.9281581998809113
eval_loss = 0.2222444740207354
global_step = 59826
loss = 0.14488934577978746