Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/NTMC-Community/MatchZoo

Facilitating the design, comparison and sharing of deep text matching models.
https://github.com/NTMC-Community/MatchZoo

deep-learning matching natural-language-processing neural-network text text-matching

Last synced: 2 months ago
JSON representation

Facilitating the design, comparison and sharing of deep text matching models.

Awesome Lists containing this project

README

        


logo

# MatchZoo [![Tweet](https://img.shields.io/twitter/url/http/shields.io.svg?style=social)](https://twitter.com/intent/tweet?text=MatchZoo:%20deep%20learning%20for%20semantic%20matching&url=https://github.com/NTMC-Community/MatchZoo)

> Facilitating the design, comparison and sharing of deep text matching models.

> MatchZoo 是一个通用的文本匹配工具包,它旨在方便大家快速的实现、比较、以及分享最新的深度文本匹配模型。

[![Python 3.6](https://img.shields.io/badge/python-3.6%20%7C%203.7-blue.svg)](https://www.python.org/downloads/release/python-360/)
[![Pypi Downloads](https://img.shields.io/pypi/dm/matchzoo.svg?label=pypi)](https://pypi.org/project/MatchZoo/)
[![Documentation Status](https://readthedocs.org/projects/matchzoo/badge/?version=master)](https://matchzoo.readthedocs.io/en/master/?badge=master)
[![Build Status](https://travis-ci.org/NTMC-Community/MatchZoo.svg?branch=master)](https://travis-ci.org/NTMC-Community/MatchZoo/)
[![codecov](https://codecov.io/gh/NTMC-Community/MatchZoo/branch/master/graph/badge.svg)](https://codecov.io/gh/NTMC-Community/MatchZoo)
[![License](https://img.shields.io/badge/License-Apache%202.0-yellowgreen.svg)](https://opensource.org/licenses/Apache-2.0)
[![Requirements Status](https://requires.io/github/NTMC-Community/MatchZoo/requirements.svg?branch=master)](https://requires.io/github/NTMC-Community/MatchZoo/requirements/?branch=master)
---
🔥**News: [MatchZoo-py](https://github.com/NTMC-Community/MatchZoo-py) (PyTorch version of MatchZoo) is ready now.**

The goal of MatchZoo is to provide a high-quality codebase for deep text matching research, such as document retrieval, question answering, conversational response ranking, and paraphrase identification. With the unified data processing pipeline, simplified model configuration and automatic hyper-parameters tunning features equipped, MatchZoo is flexible and easy to use.


Tasks
Text 1
Text 2
Objective


Paraphrase Identification
string 1
string 2
classification


Textual Entailment
text
hypothesis
classification


Question Answer
question
answer
classification/ranking


Conversation
dialog
response
classification/ranking


Information Retrieval
query
document
ranking

## Get Started in 60 Seconds

To train a [Deep Semantic Structured Model](https://www.microsoft.com/en-us/research/project/dssm/), import matchzoo and prepare input data.

```python
import matchzoo as mz

train_pack = mz.datasets.wiki_qa.load_data('train', task='ranking')
valid_pack = mz.datasets.wiki_qa.load_data('dev', task='ranking')
```

Preprocess your input data in three lines of code, keep track parameters to be passed into the model.

```python
preprocessor = mz.preprocessors.DSSMPreprocessor()
train_processed = preprocessor.fit_transform(train_pack)
valid_processed = preprocessor.transform(valid_pack)
```

Make use of MatchZoo customized loss functions and evaluation metrics:

```python
ranking_task = mz.tasks.Ranking(loss=mz.losses.RankCrossEntropyLoss(num_neg=4))
ranking_task.metrics = [
mz.metrics.NormalizedDiscountedCumulativeGain(k=3),
mz.metrics.MeanAveragePrecision()
]
```

Initialize the model, fine-tune the hyper-parameters.

```python
model = mz.models.DSSM()
model.params['input_shapes'] = preprocessor.context['input_shapes']
model.params['task'] = ranking_task
model.guess_and_fill_missing_params()
model.build()
model.compile()
```

Generate pair-wise training data on-the-fly, evaluate model performance using customized callbacks on validation data.

```python
train_generator = mz.PairDataGenerator(train_processed, num_dup=1, num_neg=4, batch_size=64, shuffle=True)
valid_x, valid_y = valid_processed.unpack()
evaluate = mz.callbacks.EvaluateAllMetrics(model, x=valid_x, y=valid_y, batch_size=len(valid_x))
history = model.fit_generator(train_generator, epochs=20, callbacks=[evaluate], workers=5, use_multiprocessing=False)
```

## References
[Tutorials](https://github.com/NTMC-Community/MatchZoo/tree/master/tutorials)

[English Documentation](https://matchzoo.readthedocs.io/en/master/)

[中文文档](https://matchzoo.readthedocs.io/zh/latest/)

If you're interested in the cutting-edge research progress, please take a look at [awaresome neural models for semantic match](https://github.com/NTMC-Community/awaresome-neural-models-for-semantic-match).

## Install

MatchZoo is dependent on [Keras](https://github.com/keras-team/keras) and [Tensorflow](https://github.com/tensorflow/tensorflow). Two ways to install MatchZoo:

**Install MatchZoo from Pypi:**

```python
pip install matchzoo
```

**Install MatchZoo from the Github source:**

```
git clone https://github.com/NTMC-Community/MatchZoo.git
cd MatchZoo
python setup.py install
```

## Models

1. [DRMM](https://github.com/NTMC-Community/MatchZoo/tree/master/matchzoo/models/drmm.py): this model is an implementation of A Deep Relevance Matching Model for Ad-hoc Retrieval.

2. [MatchPyramid](https://github.com/NTMC-Community/MatchZoo/tree/master/matchzoo/models/match_pyramid.py): this model is an implementation of Text Matching as Image Recognition

3. [ARC-I](https://github.com/NTMC-Community/MatchZoo/tree/master/matchzoo/models/arci.py): this model is an implementation of Convolutional Neural Network Architectures for Matching Natural Language Sentences

4. [DSSM](https://github.com/NTMC-Community/MatchZoo/tree/master/matchzoo/models/dssm.py): this model is an implementation of Learning Deep Structured Semantic Models for Web Search using Clickthrough Data

5. [CDSSM](https://github.com/NTMC-Community/MatchZoo/tree/master/matchzoo/models/cdssm.py): this model is an implementation of Learning Semantic Representations Using Convolutional Neural Networks for Web Search

6. [ARC-II](https://github.com/NTMC-Community/MatchZoo/tree/master/matchzoo/models/arcii.py): this model is an implementation of Convolutional Neural Network Architectures for Matching Natural Language Sentences

7. [MV-LSTM](https://github.com/NTMC-Community/MatchZoo/tree/master/matchzoo/models/mvlstm.py):this model is an implementation of A Deep Architecture for Semantic Matching with Multiple Positional Sentence Representations

8. [aNMM](https://github.com/NTMC-Community/MatchZoo/tree/master/matchzoo/models/anmm.py): this model is an implementation of aNMM: Ranking Short Answer Texts with Attention-Based Neural Matching Model

9. [DUET](https://github.com/NTMC-Community/MatchZoo/tree/master/matchzoo/models/duet.py): this model is an implementation of Learning to Match Using Local and Distributed Representations of Text for Web Search

10. [K-NRM](https://github.com/NTMC-Community/MatchZoo/tree/master/matchzoo/models/knrm.py): this model is an implementation of End-to-End Neural Ad-hoc Ranking with Kernel Pooling

11. [CONV-KNRM](https://github.com/NTMC-Community/MatchZoo/tree/master/matchzoo/models/conv_knrm.py): this model is an implementation of Convolutional neural networks for soft-matching n-grams in ad-hoc search

12. models under development: Match-SRNN, DeepRank, BiMPM ....

## Citation

If you use MatchZoo in your research, please use the following BibTex entry.

```
@inproceedings{Guo:2019:MLP:3331184.3331403,
author = {Guo, Jiafeng and Fan, Yixing and Ji, Xiang and Cheng, Xueqi},
title = {MatchZoo: A Learning, Practicing, and Developing System for Neural Text Matching},
booktitle = {Proceedings of the 42Nd International ACM SIGIR Conference on Research and Development in Information Retrieval},
series = {SIGIR'19},
year = {2019},
isbn = {978-1-4503-6172-9},
location = {Paris, France},
pages = {1297--1300},
numpages = {4},
url = {http://doi.acm.org/10.1145/3331184.3331403},
doi = {10.1145/3331184.3331403},
acmid = {3331403},
publisher = {ACM},
address = {New York, NY, USA},
keywords = {matchzoo, neural network, text matching},
}
```

## Development Team

​ ​ ​ ​




faneshion

Fan Yixing

Core Dev

ASST PROF, ICT




bwanglzu

Wang Bo

Core Dev
M.S. TU Delft




uduse

Wang Zeyi

Core Dev
B.S. UC Davis




pl8787

Pang Liang

Core Dev

ASST PROF, ICT




yangliuy

Yang Liu

Core Dev

PhD. UMASS






wqh17101

Wang Qinghua

Documentation

B.S. Shandong Univ.




ZizhenWang

Wang Zizhen

Dev

M.S. UCAS




lixinsu

Su Lixin

Dev

PhD. UCAS




zhouzhouyang520

Yang Zhou

Dev

M.S. CQUT




rgtjf

Tian Junfeng

Dev

M.S. ECNU




## Contribution

Please make sure to read the [Contributing Guide](./CONTRIBUTING.md) before creating a pull request. If you have a MatchZoo-related paper/project/compnent/tool, send a pull request to [this awesome list](https://github.com/NTMC-Community/awaresome-neural-models-for-semantic-match)!

Thank you to all the people who already contributed to MatchZoo!

[Jianpeng Hou](https://github.com/HouJP), [Lijuan Chen](https://github.com/githubclj), [Yukun Zheng](https://github.com/zhengyk11), [Niuguo Cheng](https://github.com/niuox), [Dai Zhuyun](https://github.com/AdeDZY), [Aneesh Joshi](https://github.com/aneesh-joshi), [Zeno Gantner](https://github.com/zenogantner), [Kai Huang](https://github.com/hkvision), [stanpcf](https://github.com/stanpcf), [ChangQF](https://github.com/ChangQF), [Mike Kellogg
](https://github.com/wordreference)

## Project Organizers

- Jiafeng Guo
* Institute of Computing Technology, Chinese Academy of Sciences
* [Homepage](http://www.bigdatalab.ac.cn/~gjf/)
- Yanyan Lan
* Institute of Computing Technology, Chinese Academy of Sciences
* [Homepage](http://www.bigdatalab.ac.cn/~lanyanyan/)
- Xueqi Cheng
* Institute of Computing Technology, Chinese Academy of Sciences
* [Homepage](http://www.bigdatalab.ac.cn/~cxq/)

## License

[Apache-2.0](https://opensource.org/licenses/Apache-2.0)

Copyright (c) 2015-present, Yixing Fan (faneshion)