Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/NUST-Machine-Intelligence-Laboratory/TorchSemiSeg2
https://github.com/NUST-Machine-Intelligence-Laboratory/TorchSemiSeg2
Last synced: about 1 month ago
JSON representation
- Host: GitHub
- URL: https://github.com/NUST-Machine-Intelligence-Laboratory/TorchSemiSeg2
- Owner: NUST-Machine-Intelligence-Laboratory
- Created: 2023-04-18T11:33:18.000Z (over 1 year ago)
- Default Branch: main
- Last Pushed: 2023-04-18T11:38:40.000Z (over 1 year ago)
- Last Synced: 2024-08-03T01:11:48.691Z (5 months ago)
- Language: Python
- Size: 5.36 MB
- Stars: 1
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- Awesome-Semi-Supervised-Semantic-Segmentation - Code - Machine-Intelligence-Laboratory/TorchSemiSeg2)|[Paper](https://arxiv.org/pdf/2304.11539.pdf)| (2023)
README
# Semi-Supervised Semantic Segmentation With Region Relevance
## Requirements
>📋 The code is developed using Python 3.6 with PyTorch 1.10.1. The code is developed and tested using 2 NVIDIA TITAN RTX GPUs.
## Training && Evaluation
To train and eval the model in the paper, run this command:
```train
cd ./voc/voc8.res50v3+.CPS+CutMix
bash script_mod.sh
```>📋 In script_mod.sh, you need to specify some variables, such as the path to your data dir, the path to your snapshot dir that stores checkpoints, etc.
## Our Models DownLoad && Test
We have released the weight models on PASCAL VOC in our experiment, you can download here:
- [My voc2 model](https://drive.google.com/file/d/12ub3q4-W_3gBPcUcsoOqbe3fOVBngEDt/view?usp=share_link) trained on PASCAL VOC 2012 at 1/2 partition protocol.
- [My voc4 model](https://drive.google.com/file/d/1GErx-JndoqM1pzuQ-33KUJ21gdatH055/view?usp=share_link) trained on PASCAL VOC 2012 at 1/4 partition protocol.
- [My voc8 model](https://drive.google.com/file/d/1olSbRjWSMFckkhewc6qWM13D-oSeoFG3/view?usp=share_link) trained on PASCAL VOC 2012 at 1/8 partition protocol.
- [My voc16 model](https://drive.google.com/file/d/14WJBhoo1NpPb1PyPzoIwgEUdFWmtadHH/view?usp=share_link) trained on PASCAL VOC 2012 at 1/16 partition protocol.>📋 The command for test is in script_mod.sh, you only need to annotate the command for training and modify the parameters appropriately.