Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/NVIDIA/GenerativeAIExamples
Generative AI reference workflows optimized for accelerated infrastructure and microservice architecture.
https://github.com/NVIDIA/GenerativeAIExamples
gpu-acceleration large-language-models llm llm-inference microservice nemo rag retrieval-augmented-generation tensorrt triton-inference-server
Last synced: 3 months ago
JSON representation
Generative AI reference workflows optimized for accelerated infrastructure and microservice architecture.
- Host: GitHub
- URL: https://github.com/NVIDIA/GenerativeAIExamples
- Owner: NVIDIA
- License: apache-2.0
- Created: 2023-10-19T13:46:31.000Z (over 1 year ago)
- Default Branch: main
- Last Pushed: 2024-10-26T17:13:40.000Z (3 months ago)
- Last Synced: 2024-10-29T18:09:50.381Z (3 months ago)
- Topics: gpu-acceleration, large-language-models, llm, llm-inference, microservice, nemo, rag, retrieval-augmented-generation, tensorrt, triton-inference-server
- Language: Python
- Homepage:
- Size: 47.5 MB
- Stars: 2,348
- Watchers: 58
- Forks: 490
- Open Issues: 33
-
Metadata Files:
- Readme: README.md
- Changelog: CHANGELOG.md
- Contributing: docs/contributing.md
- License: LICENSE.DATA
- Security: SECURITY.md
- Support: docs/support-matrix.md
Awesome Lists containing this project
- StarryDivineSky - NVIDIA/GenerativeAIExamples
- AiTreasureBox - NVIDIA/GenerativeAIExamples - 01-19_2672_3](https://img.shields.io/github/stars/NVIDIA/GenerativeAIExamples.svg)|Generative AI reference workflows optimized for accelerated infrastructure and microservice architecture.| (Repos)
- awesome_ai_agents - Generativeaiexamples - Generative AI reference workflows optimized for accelerated infrastructure and microservice architecture. (Building / Workflows)
- awesome_ai_agents - Generativeaiexamples - Generative AI reference workflows optimized for accelerated infrastructure and microservice architecture. (Building / Workflows)
README
![](docs/images/[email protected])
# NVIDIA Generative AI Examples
This repository is a starting point for developers looking to integrate with the NVIDIA software ecosystem to speed up their generative AI systems. Whether you are building RAG pipelines, agentic workflows, or fine-tuning models, this repository will help you integrate NVIDIA, seamlessly and natively, with your development stack.
## Table of Contents
* [What's New?](#whats-new)
* [Knowledge Graph RAG](#knowledge-graph-rag)
* [Agentic Workflows with Llama 3.1](#agentic-workflows-with-llama-31)
* [RAG with Local NIM Deployment and LangChain](#rag-with-local-nim-deployment-and-langchain)
* [Try it Now!](#try-it-now)
* [RAG](#rag)
* [RAG Notebooks](#rag-notebooks)
* [RAG Examples](#rag-examples)
* [RAG Tools](#rag-tools)
* [RAG Projects](#rag-projects)
* [Documentation](#documentation)
* [Getting Started](#getting-started)
* [How To's](#how-tos)
* [Reference](#reference)
* [Community](#community)## What's New?
### Knowledge Graph RAG
This example implements a GPU-accelerated pipeline for creating and querying knowledge graphs using RAG by leveraging NIM microservices and the RAPIDS ecosystem to process large-scale datasets efficiently.
- [Knowledge Graphs for RAG with NVIDIA AI Foundation Models and Endpoints](community/knowledge_graph_rag)
### Agentic Workflows with Llama 3.1
- Build an Agentic RAG Pipeline with Llama 3.1 and NVIDIA NeMo Retriever NIM microservices [[Blog](https://developer.nvidia.com/blog/build-an-agentic-rag-pipeline-with-llama-3-1-and-nvidia-nemo-retriever-nims/), [Notebook](RAG/notebooks/langchain/agentic_rag_with_nemo_retriever_nim.ipynb)]
- [NVIDIA Morpheus, NIM microservices, and RAG pipelines integrated to create LLM-based agent pipelines](https://github.com/NVIDIA/GenerativeAIExamples/blob/v0.7.0/experimental/event-driven-rag-cve-analysis)### RAG with Local NIM Deployment and LangChain
- Tips for Building a RAG Pipeline with NVIDIA AI LangChain AI Endpoints by Amit Bleiweiss. [[Blog](https://developer.nvidia.com/blog/tips-for-building-a-rag-pipeline-with-nvidia-ai-langchain-ai-endpoints/), [Notebook](https://github.com/NVIDIA/GenerativeAIExamples/blob/v0.7.0/notebooks/08_RAG_Langchain_with_Local_NIM.ipynb)]
For more information, refer to the [Generative AI Example releases](https://github.com/NVIDIA/GenerativeAIExamples/releases/).
## Try it Now!
Experience NVIDIA RAG Pipelines with just a few steps!
1. Get your NVIDIA API key.
1. Go to the [NVIDIA API Catalog](https://build.ngc.nvidia.com/explore/).
1. Select any model.
1. Click **Get API Key**.
1. Run:
```console
export NVIDIA_API_KEY=nvapi-...
```1. Clone the repository.
```console
git clone https://github.com/nvidia/GenerativeAIExamples.git
```1. Build and run the basic RAG pipeline.
```console
cd GenerativeAIExamples/RAG/examples/basic_rag/langchain/
docker compose up -d --build
```1. Go to and submit queries to the sample RAG Playground.
1. Stop containers when done.
```console
docker compose down
```
## RAG
### RAG Notebooks
NVIDIA has first-class support for popular generative AI developer frameworks like [LangChain](https://python.langchain.com/v0.2/docs/integrations/chat/nvidia_ai_endpoints/), [LlamaIndex](https://docs.llamaindex.ai/en/stable/examples/llm/nvidia/), and [Haystack](https://haystack.deepset.ai/integrations/nvidia). These end-to-end notebooks show how to integrate NIM microservices using your preferred generative AI development framework.
Use these [notebooks](./RAG/notebooks/README.md) to learn about the LangChain and LlamaIndex connectors.
#### LangChain Notebooks
- RAG
- [Basic RAG with CHATNVIDIA LangChain Integration](./RAG/notebooks/langchain/langchain_basic_RAG.ipynb)
- [RAG using local NIM microservices for LLMs and Retrieval](./RAG/notebooks/langchain/RAG_Langchain_with_Local_NIM.ipynb)
- [RAG for HTML Documents](./RAG/notebooks/langchain/RAG_for_HTML_docs_with_Langchain_NVIDIA_AI_Endpoints.ipynb)
- [Chat with NVIDIA Financial Reports](./RAG/notebooks/langchain/Chat_with_nvidia_financial_reports.ipynb)
- Agents
- [NIM Tool Calling 101](https://github.com/langchain-ai/langchain-nvidia/blob/main/cookbook/nvidia_nim_agents_llama3.1.ipynb)
- [Agentic RAG with NeMo Retriever](./RAG/notebooks/langchain/agentic_rag_with_nemo_retriever_nim.ipynb)
- [Agents with Human in the Loop](./RAG/notebooks/langchain/LangGraph_HandlingAgent_IntermediateSteps.ipynb)#### LlamaIndex Notebooks
- [Basic RAG with LlamaIndex Integration](./RAG/notebooks/llamaindex/llamaindex_basic_RAG.ipynb)
### RAG Examples
By default, these end-to-end [examples](RAG/examples/README.md) use preview NIM endpoints on [NVIDIA API Catalog](https://catalog.ngc.nvidia.com). Alternatively, you can run any of the examples [on premises](./RAG/examples/local_deploy/).
#### Basic RAG Examples
- [LangChain example](./RAG/examples/basic_rag/langchain/README.md)
- [LlamaIndex example](./RAG/examples/basic_rag/llamaindex/README.md)#### Advanced RAG Examples
- [Multi-Turn](./RAG/examples/advanced_rag/multi_turn_rag/README.md)
- [Multimodal Data](./RAG/examples/advanced_rag/multimodal_rag/README.md)
- [Structured Data](./RAG/examples/advanced_rag/structured_data_rag/README.md) (CSV)
- [Query Decomposition](./RAG/examples/advanced_rag/query_decomposition_rag/README.md)### RAG Tools
Example tools and tutorials to enhance LLM development and productivity when using NVIDIA RAG pipelines.
- [Evaluation](./RAG/tools/evaluation/README.md)
- [Observability](./RAG/tools/observability/README.md)### RAG Projects
- [NVIDIA Tokkio LLM-RAG](https://docs.nvidia.com/ace/latest/workflows/tokkio/text/Tokkio_LLM_RAG_Bot.html): Use Tokkio to add avatar animation for RAG responses.
- [Hybrid RAG Project on AI Workbench](https://github.com/NVIDIA/workbench-example-hybrid-rag): Run an NVIDIA AI Workbench example project for RAG.## Documentation
### Getting Started
- [Prerequisites](./docs/common-prerequisites.md)
### How To's
- [Changing the Inference or Embedded Model](./docs/change-model.md)
- [Customizing the Vector Database](./docs/vector-database.md)
- [Customizing the Chain Server](./docs/chain-server.md):
- [Chunking Strategy](./docs/text-splitter.md)
- [Prompting Template Engineering](./docs/prompt-customization.md)
- [Configuring LLM Parameters at Runtime](./docs/llm-params.md)
- [Supporting Multi-Turn Conversations](./docs/multiturn.md)
- [Speaking Queries and Listening to Responses with NVIDIA Riva](./docs/riva-asr-tts.md)### Reference
- [Support Matrix](./docs/support-matrix.md)
- [Architecture](./docs/architecture.md)
- [Using the Sample Chat Web Application](./docs/using-sample-web-application.md)
- [RAG Playground Web Application](./docs/frontend.md)
- [Software Component Configuration](./docs/configuration.md)## Community
We're posting these examples on GitHub to support the NVIDIA LLM community and facilitate feedback.
We invite contributions! Open a GitHub issue or pull request! See [contributing](docs/contributing.md) Check out the [community](./community/README.md) examples and notebooks.