Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/NVIDIA/flownet2-pytorch

Pytorch implementation of FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks
https://github.com/NVIDIA/flownet2-pytorch

Last synced: 3 months ago
JSON representation

Pytorch implementation of FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks

Awesome Lists containing this project

README

        

# flownet2-pytorch

Pytorch implementation of [FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks](https://arxiv.org/abs/1612.01925).

Multiple GPU training is supported, and the code provides examples for training or inference on [MPI-Sintel](http://sintel.is.tue.mpg.de/) clean and final datasets. The same commands can be used for training or inference with other datasets. See below for more detail.

Inference using fp16 (half-precision) is also supported.

For more help, type


python main.py --help

## Network architectures
Below are the different flownet neural network architectures that are provided.

A batchnorm version for each network is also available.

- **FlowNet2S**
- **FlowNet2C**
- **FlowNet2CS**
- **FlowNet2CSS**
- **FlowNet2SD**
- **FlowNet2**

## Custom layers

`FlowNet2` or `FlowNet2C*` achitectures rely on custom layers `Resample2d` or `Correlation`.

A pytorch implementation of these layers with cuda kernels are available at [./networks](./networks).

Note : Currently, half precision kernels are not available for these layers.

## Data Loaders

Dataloaders for FlyingChairs, FlyingThings, ChairsSDHom and ImagesFromFolder are available in [datasets.py](./datasets.py).

## Loss Functions

L1 and L2 losses with multi-scale support are available in [losses.py](./losses.py).

## Installation

# get flownet2-pytorch source
git clone https://github.com/NVIDIA/flownet2-pytorch.git
cd flownet2-pytorch

# install custom layers
bash install.sh

### Python requirements
Currently, the code supports python 3
* numpy
* PyTorch ( == 0.4.1, for <= 0.4.0 see branch [python36-PyTorch0.4](https://github.com/NVIDIA/flownet2-pytorch/tree/python36-PyTorch0.4))
* scipy
* scikit-image
* tensorboardX
* colorama, tqdm, setproctitle

## Converted Caffe Pre-trained Models
We've included caffe pre-trained models. Should you use these pre-trained weights, please adhere to the [license agreements](https://drive.google.com/file/d/1TVv0BnNFh3rpHZvD-easMb9jYrPE2Eqd/view?usp=sharing).

* [FlowNet2](https://drive.google.com/file/d/1hF8vS6YeHkx3j2pfCeQqqZGwA_PJq_Da/view?usp=sharing)[620MB]
* [FlowNet2-C](https://drive.google.com/file/d/1BFT6b7KgKJC8rA59RmOVAXRM_S7aSfKE/view?usp=sharing)[149MB]
* [FlowNet2-CS](https://drive.google.com/file/d/1iBJ1_o7PloaINpa8m7u_7TsLCX0Dt_jS/view?usp=sharing)[297MB]
* [FlowNet2-CSS](https://drive.google.com/file/d/157zuzVf4YMN6ABAQgZc8rRmR5cgWzSu8/view?usp=sharing)[445MB]
* [FlowNet2-CSS-ft-sd](https://drive.google.com/file/d/1R5xafCIzJCXc8ia4TGfC65irmTNiMg6u/view?usp=sharing)[445MB]
* [FlowNet2-S](https://drive.google.com/file/d/1V61dZjFomwlynwlYklJHC-TLfdFom3Lg/view?usp=sharing)[148MB]
* [FlowNet2-SD](https://drive.google.com/file/d/1QW03eyYG_vD-dT-Mx4wopYvtPu_msTKn/view?usp=sharing)[173MB]

## Inference
# Example on MPISintel Clean
python main.py --inference --model FlowNet2 --save_flow --inference_dataset MpiSintelClean \
--inference_dataset_root /path/to/mpi-sintel/clean/dataset \
--resume /path/to/checkpoints

## Training and validation

# Example on MPISintel Final and Clean, with L1Loss on FlowNet2 model
python main.py --batch_size 8 --model FlowNet2 --loss=L1Loss --optimizer=Adam --optimizer_lr=1e-4 \
--training_dataset MpiSintelFinal --training_dataset_root /path/to/mpi-sintel/final/dataset \
--validation_dataset MpiSintelClean --validation_dataset_root /path/to/mpi-sintel/clean/dataset

# Example on MPISintel Final and Clean, with MultiScale loss on FlowNet2C model
python main.py --batch_size 8 --model FlowNet2C --optimizer=Adam --optimizer_lr=1e-4 --loss=MultiScale --loss_norm=L1 \
--loss_numScales=5 --loss_startScale=4 --optimizer_lr=1e-4 --crop_size 384 512 \
--training_dataset FlyingChairs --training_dataset_root /path/to/flying-chairs/dataset \
--validation_dataset MpiSintelClean --validation_dataset_root /path/to/mpi-sintel/clean/dataset

## Results on MPI-Sintel
[![Predicted flows on MPI-Sintel](./image.png)](https://www.youtube.com/watch?v=HtBmabY8aeU "Predicted flows on MPI-Sintel")

## Reference
If you find this implementation useful in your work, please acknowledge it appropriately and cite the paper:
````
@InProceedings{IMKDB17,
author = "E. Ilg and N. Mayer and T. Saikia and M. Keuper and A. Dosovitskiy and T. Brox",
title = "FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks",
booktitle = "IEEE Conference on Computer Vision and Pattern Recognition (CVPR)",
month = "Jul",
year = "2017",
url = "http://lmb.informatik.uni-freiburg.de//Publications/2017/IMKDB17"
}
````
```
@misc{flownet2-pytorch,
author = {Fitsum Reda and Robert Pottorff and Jon Barker and Bryan Catanzaro},
title = {flownet2-pytorch: Pytorch implementation of FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks},
year = {2017},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/NVIDIA/flownet2-pytorch}}
}
```
## Related Optical Flow Work from Nvidia
Code (in Caffe and Pytorch): [PWC-Net](https://github.com/NVlabs/PWC-Net)

Paper : [PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume](https://arxiv.org/abs/1709.02371).

## Acknowledgments
Parts of this code were derived, as noted in the code, from [ClementPinard/FlowNetPytorch](https://github.com/ClementPinard/FlowNetPytorch).