Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/NVIDIA/grcuda
Polyglot CUDA integration for the GraalVM
https://github.com/NVIDIA/grcuda
Last synced: about 1 month ago
JSON representation
Polyglot CUDA integration for the GraalVM
- Host: GitHub
- URL: https://github.com/NVIDIA/grcuda
- Owner: NVIDIA
- License: other
- Created: 2019-08-21T15:39:27.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2023-07-19T07:32:31.000Z (over 1 year ago)
- Last Synced: 2024-10-29T18:10:26.426Z (about 1 month ago)
- Language: Java
- Size: 288 KB
- Stars: 221
- Watchers: 11
- Forks: 19
- Open Issues: 8
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-graal - grCUDA, Polyglot CUDA integration for the GraalVM
README
# grCUDA: Polyglot GPU Access in GraalVM
This Truffle language exposes GPUs to the polyglot [GraalVM](http://www.graalvm.org). The goal is to
1) make data exchange between the host language and the GPU efficient without burdening the programmer.
2) allow programmers to invoke _existing_ GPU kernels from their host language.
Supported and tested GraalVM languages:
- Python
- JavaScript/NodeJS
- Ruby
- R
- Java
- C and Rust through the Graal Sulong ComponentA description of grCUDA and its the features can be found in the [grCUDA documentation](docs/grcuda.md).
The [bindings documentation](docs/bindings.md) contains a tutorial that shows
how to bind precompiled kernels to callables, compile and launch kernels.**Additional Information:**
- [grCUDA: A Polyglot Language Binding for CUDA in GraalVM](https://devblogs.nvidia.com/grcuda-a-polyglot-language-binding-for-cuda-in-graalvm/). NVIDIA Developer Blog,
November 2019.
- [grCUDA: A Polyglot Language Binding](https://youtu.be/_lI6ubnG9FY). Presentation at Oracle CodeOne 2019, September 2019.
- [Simplifying GPU Access](https://developer.nvidia.com/gtc/2020/video/s21269-vid). Presentation at NVIDIA GTC 2020, March 2020.## Using grCUDA in the GraalVM
grCUDA can be used in the binaries of the GraalVM languages (`lli`, `graalpython`,
`js`, `R`, and `ruby)`. The JAR file containing grCUDA must be appended to the classpath
or copied into `jre/languages/grcuda` of the Graal installation. Note that `--jvm`
and `--polyglot` must be specified in both cases as well.The following example shows how to create a GPU kernel and two device arrays
in JavaScript (NodeJS) and invoke the kernel:```JavaScript
// build kernel from CUDA C/C++ source code
const kernelSource = `
__global__ void increment(int *arr, int n) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < n) {
arr[idx] += 1;
}
}`
const cu = Polyglot.eval('grcuda', 'CU') // get grCUDA namespace object
const incKernel = cu.buildkernel(
kernelSource, // CUDA kernel source code string
'increment', // kernel name
'pointer, sint32') // kernel signature// allocate device array
const numElements = 100
const deviceArray = cu.DeviceArray('int', numElements)
for (let i = 0; i < numElements; i++) {
deviceArray[i] = i // ... and initialize on the host
}
// launch kernel in grid of 1 block with 128 threads
incKernel(1, 128)(deviceArray, numElements)// print elements from updated array
for (const element of deviceArray) {
console.log(element)
}
``````console
$GRAALVM_DIR/bin/node --polyglot --jvm example.js
1
2
...
100
```### Calling existing compiled GPU Kernels
The next example shows how to launch an __existing compiled__ GPU kernel from Python.
The CUDA kernel```C
__global__ void increment(int *arr, int n) {
auto idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < n) {
arr[idx] += 1;
}
}
```is compiled using `nvcc --cubin` into a cubin file. The kernel function can be loaded from the cubin and bound to a callable object in the host language, here Python.
```Python
import polyglotnum_elements = 100
cu = polyglot.eval(language='grcuda', string='CU')
device_array = cu.DeviceArray('int', num_elements)
for i in range(num_elements):
device_array[i] = i# bind to kernel from binary
inc_kernel = cu.bindkernel('kernel.cubin',
'cxx increment(arr: inout pointer sint32, n: sint32)')# launch kernel as 1 block with 128 threads
inc_kernel(1, 128)(device_array, num_elements)for i in range(num_elements):
print(device_array[i])
``````console
nvcc --cubin --generate-code arch=compute_75,code=sm_75 kernel.cu
$GRAALVM_DIR/bin/graalpython --polyglot --jvm example.py
1
2
...
100
```For more details on how to invoke existing GPU kernels, see the
Documentation on [polyglot kernel launches](docs/launchkernel.md).## Installation
grCUDA can be downloaded as a binary JAR from [grcuda/releases](https://github.com/NVIDIA/grcuda/releases) and manually copied into a GraalVM installation.
1. Download GraalVM CE 20.0.0 for Linux `graalvm-ce-java8-linux-amd64-20.0.0.tar.gz`
from [GitHub](https://github.com/oracle/graal/releases) and untar it in your
installation directory.```console
cd
tar xfz graalvm-ce-java8-linux-amd64-20.0.0.tar.gz
export GRAALVM_DIR=`pwd`/graalvm-ce-java8-20.0.0
```2. Download the grCUDA JAR from [grcuda/releases](https://github.com/NVIDIA/grcuda/releases)
```console
cd $GRAALVM_DIR/jre/languages
mkdir grcuda
cp /grcuda-0.1.0.jar grcuda
```3. Test grCUDA in Node.JS from GraalVM.
```console
cd $GRAALVM_DIR/bin
./node --jvm --polyglot
> arr = Polyglot.eval('grcuda', 'int[5]')
[Array: null prototype] [ 0, 0, 0, 0, 0 ]
```4. Download other GraalVM languages.
```console
cd $GRAAL_VM/bin
./gu available
./gu install python
./gu install R
./gu install ruby
```## Instructions to build grCUDA from Sources
grCUDA requires the [mx build tool](https://github.com/graalvm/mx). Clone the mx
repository and add the directory into `$PATH`, such that the `mx` can be invoked from
the command line.Build grCUDA and the unit tests:
```console
cd
mx build
```Note that this will also checkout the graal repository.
To run unit tests:
```bash
mx unittest com.nvidia
```