Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/NVlabs/SegFormer
Official PyTorch implementation of SegFormer
https://github.com/NVlabs/SegFormer
ade20k cityscapes semantic-segmentation transformer
Last synced: about 2 months ago
JSON representation
Official PyTorch implementation of SegFormer
- Host: GitHub
- URL: https://github.com/NVlabs/SegFormer
- Owner: NVlabs
- License: other
- Created: 2021-06-11T17:22:07.000Z (over 3 years ago)
- Default Branch: master
- Last Pushed: 2024-08-02T15:50:33.000Z (4 months ago)
- Last Synced: 2024-10-14T12:40:51.790Z (about 2 months ago)
- Topics: ade20k, cityscapes, semantic-segmentation, transformer
- Language: Python
- Homepage: https://arxiv.org/abs/2105.15203
- Size: 2.57 MB
- Stars: 2,516
- Watchers: 31
- Forks: 350
- Open Issues: 103
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome_vision_transformer - code
- awesome_vision_transformer - code
README
[![NVIDIA Source Code License](https://img.shields.io/badge/license-NSCL-blue.svg)](https://github.com/NVlabs/SegFormer/blob/master/LICENSE)
![Python 3.8](https://img.shields.io/badge/python-3.8-green.svg)# SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers
Figure 1: Performance of SegFormer-B0 to SegFormer-B5.### [Project page](https://github.com/NVlabs/SegFormer) | [Paper](https://arxiv.org/abs/2105.15203) | [Demo (Youtube)](https://www.youtube.com/watch?v=J0MoRQzZe8U) | [Demo (Bilibili)](https://www.bilibili.com/video/BV1MV41147Ko/) | [Intro Video](https://www.youtube.com/watch?v=nBjXyoltCHU)
SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers.
[Enze Xie](https://xieenze.github.io/), [Wenhai Wang](https://whai362.github.io/), [Zhiding Yu](https://chrisding.github.io/), [Anima Anandkumar](http://tensorlab.cms.caltech.edu/users/anima/), [Jose M. Alvarez](https://rsu.data61.csiro.au/people/jalvarez/), and [Ping Luo](http://luoping.me/).
NeurIPS 2021.This repository contains the official Pytorch implementation of training & evaluation code and the pretrained models for [SegFormer](https://arxiv.org/abs/2105.15203).
SegFormer is a simple, efficient and powerful semantic segmentation method, as shown in Figure 1.
We use [MMSegmentation v0.13.0](https://github.com/open-mmlab/mmsegmentation/tree/v0.13.0) as the codebase.
🔥🔥 SegFormer is on [MMSegmentation](https://github.com/open-mmlab/mmsegmentation/tree/master/configs/segformer). 🔥🔥
## Installation
For install and data preparation, please refer to the guidelines in [MMSegmentation v0.13.0](https://github.com/open-mmlab/mmsegmentation/tree/v0.13.0).
Other requirements:
```pip install timm==0.3.2```An example (works for me): ```CUDA 10.1``` and ```pytorch 1.7.1```
```
pip install torchvision==0.8.2
pip install timm==0.3.2
pip install mmcv-full==1.2.7
pip install opencv-python==4.5.1.48
cd SegFormer && pip install -e . --user
```## Evaluation
Download `trained weights`.
(
[google drive](https://drive.google.com/drive/folders/1GAku0G0iR9DsBxCbfENWMJ27c5lYUeQA?usp=sharing) |
[onedrive](https://connecthkuhk-my.sharepoint.com/:f:/g/personal/xieenze_connect_hku_hk/Ept_oetyUGFCsZTKiL_90kUBy5jmPV65O5rJInsnRCDWJQ?e=CvGohw)
)Example: evaluate ```SegFormer-B1``` on ```ADE20K```:
```
# Single-gpu testing
python tools/test.py local_configs/segformer/B1/segformer.b1.512x512.ade.160k.py /path/to/checkpoint_file# Multi-gpu testing
./tools/dist_test.sh local_configs/segformer/B1/segformer.b1.512x512.ade.160k.py /path/to/checkpoint_file# Multi-gpu, multi-scale testing
tools/dist_test.sh local_configs/segformer/B1/segformer.b1.512x512.ade.160k.py /path/to/checkpoint_file --aug-test
```## Training
Download `weights`
(
[google drive](https://drive.google.com/drive/folders/1b7bwrInTW4VLEm27YawHOAMSMikga2Ia?usp=sharing) |
[onedrive](https://connecthkuhk-my.sharepoint.com/:f:/g/personal/xieenze_connect_hku_hk/EvOn3l1WyM5JpnMQFSEO5b8B7vrHw9kDaJGII-3N9KNhrg?e=cpydzZ)
)
pretrained on ImageNet-1K, and put them in a folder ```pretrained/```.Example: train ```SegFormer-B1``` on ```ADE20K```:
```
# Single-gpu training
python tools/train.py local_configs/segformer/B1/segformer.b1.512x512.ade.160k.py# Multi-gpu training
./tools/dist_train.sh local_configs/segformer/B1/segformer.b1.512x512.ade.160k.py
```## Visualize
Here is a demo script to test a single image. More details refer to [MMSegmentation's Doc](https://mmsegmentation.readthedocs.io/en/latest/get_started.html).
```shell
python demo/image_demo.py ${IMAGE_FILE} ${CONFIG_FILE} ${CHECKPOINT_FILE} [--device ${DEVICE_NAME}] [--palette-thr ${PALETTE}]
```Example: visualize ```SegFormer-B1``` on ```CityScapes```:
```shell
python demo/image_demo.py demo/demo.png local_configs/segformer/B1/segformer.b1.512x512.ade.160k.py \
/path/to/checkpoint_file --device cuda:0 --palette cityscapes
```## License
Please check the LICENSE file. SegFormer may be used non-commercially, meaning for research or
evaluation purposes only. For business inquiries, please visit our website and submit the form: [NVIDIA Research Licensing](https://www.nvidia.com/en-us/research/inquiries/).## Citation
```
@inproceedings{xie2021segformer,
title={SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers},
author={Xie, Enze and Wang, Wenhai and Yu, Zhiding and Anandkumar, Anima and Alvarez, Jose M and Luo, Ping},
booktitle={Neural Information Processing Systems (NeurIPS)},
year={2021}
}
```