Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/Nomination-NRB/VisualBilibili

爬取B站up视频详细信息,并进行可视化
https://github.com/Nomination-NRB/VisualBilibili

Last synced: 3 months ago
JSON representation

爬取B站up视频详细信息,并进行可视化

Awesome Lists containing this project

README

        

# Visualization

## 简介

爬取B站up视频详细信息,并进行可视化

由于本项目的爬虫是单线程,所以选择的up主数据量**建议小于3000**,如果你能优化到多线程加速,欢迎pull request

### 技术栈

前端:HTML, CSS, JavaScript

后端:flask

爬虫:python

数据库:MySQL

深度学习:BiRNN->LSTM训练模型,情感分类仓库:https://github.com/Nomination-NRB/SentimentClassify

### 基本功能

- 视频数据分析
- 数据来源:up主个人主页统计
- 关注数,粉丝数,获赞数,播放数,阅读数,视频数

- 个人视频排行
- 综合评分前9个视频(降序)
- 评分算法:0.1\*view+barrage+reply+2\*favorite+2\*coin+1.5\*share+0.5*like

- 稿件时长分区
- 粉丝
- 信息:名字,关注时间,性别

- 评论情绪
- 数据来源:所有投稿视频
- 积极/消极

- 总览信息
- 所有视频的点赞,投币,收藏,评论,播放

- 稿件详情
- 评分前6的稿件的详细数据
- 可以点击分区进行单独查看数据权重

## 总览

[![zm9vG9.png](https://s1.ax1x.com/2022/11/17/zm9vG9.png)](https://imgse.com/i/zm9vG9)

## 目录

```
VisualBilibili
├─ Data
│ ├─ fansData·································//爬取的粉丝数据
│ │ └─ 237733293_fans_data.csv
│ ├─ overViewData·····························//爬取的个人主页的总览数据
│ │ └─ 237733293_overview_data.csv
│ ├─ reviewData·······························//爬取的所有视频详细信息数据,此处仅列出2个
│ │ ├─ BV12Q4y1C7VK.csv
│ │ ├─ BV12S4y1r7Hv.csv
│ ├─ reviewForInfer···························//深度学习所需数据
│ │ ├─ result.csv·····························//result.csv: 预测的结果
│ │ ├─ review.csv·····························//review.csv: 用于预测的评论
│ │ └─ reviewResult.csv·······················//review与result的合并结果
│ ├─ sumData··································//所有视频评论的汇总
│ │ └─ sumReviewData.csv
│ ├─ videoData································//所有视频的简介信息
│ │ └─ 237733293_video_data.csv
│ └─ videoDetailData··························//所有视频的详细信息
│ └─ 237733293_videoDetail_data.csv

├─ collect_data·······························//爬虫文件夹
│ ├─ Trash.py·································//清空Data文件夹下所有的csv文件
│ ├─ getBVid.py·······························//获得所有视频的BV号
│ ├─ getReview.py·····························//获得所有视频的评论
│ ├─ getUserInfo.py···························//获得所有视频信息及用户信息
│ ├─ getfans.py·······························//获得up的粉丝信息
│ └─ main.py··································//爬虫执行总文件,会执行以上四个get.py文件

├─ flask······································//前后端文件夹
│ ├─ data·····································//用于测试前后端的数据
│ │ ├─ 237733293_fans_data.csv
│ │ ├─ 237733293_follow_data.csv
│ │ ├─ 237733293_videoDetail_data.csv
│ │ └─ 237733293_video_data.csv
│ ├─ datavisualization.sql····················//样例uid的数据,直接存入数据库,可不用执行爬虫main.py
│ ├─ linkSQL.py·······························//若使用样例uid,则运行次文件(可测试函数)
│ ├─ linkSQLData.py···························//若使用自定义uid,则该运行此文件(将数据写入数据库)
│ ├─ manage.py································//前后端执行总文件
│ ├─ static···································//前端静态样式,后端的js逻辑
│ │ ├─ css
│ │ ├─ fonts
│ │ └─ js
│ └─ templates
│ └─ index.html·····························//可视化页面

├─ motion_classification······················//深度学习情感分类文件夹
│ ├─ Data·····································//用于测试的文本数据
│ │ ├─ reviewTest.csv
│ │ └─ test.txt
│ ├─ data_utils.py····························//情感预测所需的函数
│ ├─ inference.py·····························//情感预测
│ ├─ models
│ │ └─ BiRNN.py·······························//深度神经网络
│ └─ output
│ ├─ model.pt·······························//训练好的模型
│ └─ model.vocab····························//词汇表
├─ README.md
└─ requirements.txt···························//本项目所需的依赖包
```

## 使用方法

```bash
git clone https://github.com/Nomination-NRB/VisualBilibili
```

在vscode或者其他编译器打开项目文件夹

激活本项目具体使用的环境,切换到requirements.txt目录下在终端执行该命令即可

```python
pip install -r requirements.txt
```

1. **使用样例uid=237733293的数据**

1. 在本地mysql中创建一个数据库:`CREATE DATABASE visualization DEFAULT CHARSET utf8 COLLATE utf8_general_ci;`

2. 将flask文件夹下的datavisualization.sql文件导入到数据库中:

1. mysql 默认以gbk编码连接数据库,导出备份文件是utf8编码,编码不一致导致出现错误

**解决**:`mysql -u root -p --default-character-set=utf8` 以utf8编码连接

2. `use visualization;`

3. `source C:\Users\76608\Desktop\Study\Subject\Program\DataVisualization\flask\datavisualization.sql`

4. source后面的地址请根据自己的路径填写

3. 在flask文件夹下的linkSQL.py文件中,根据自己的mysql修改get_conn函数的默认参数值(user, passwd, db)

4. 运行manage.py文件,打开本地连接即可

2. **使用自定义uid数据**

1. 在collect_data文件夹下修改main.py中的uid的值
2. 由于爬虫需要用的cookie是存在生存期限的,所以在爬取数据之前需要重新获取cookie更新
1. 在自己的B站个人空间中,右击鼠标选择检测或者直接F12
2. 根据1,2,3,4步骤,其中步骤2的选择不唯一,在列表中随便选择一个都可以,然后将cookie的值赋值得到(**为了复制准确,请右键cookie,选择copy value**)
3. [![zez13t.png](https://s1.ax1x.com/2022/11/17/zez13t.png)](https://imgse.com/i/zez13t)
4. 将**getfans.py, getUserInfo.py**中的headers里面的cookie的值替换为刚刚复制的cookie即可(getReview.py里的cookie可以不用改,如果爬取评论时出现连接失败,则再将其cookie修改)

3. 运行collect_data文件夹下的main.py,爬取的数据都会保存在Data文件夹下,文件夹具体包含内容如上目录
4. 在motion_classification文件夹下运行inference.py进行评论的积极消极情绪预测,其预测结果也会保存在Data文件夹下
1. 若Data文件夹下的内容需要清空,可以运行collect_data文件夹下的Trash.py统一清理Data文件夹下所有的csv文件

5. 在flask文件夹下,运行linkSQLData.py(根据自己的mysql修改get_conn函数的默认参数值user, passwd, db),将Data文件夹下的数据导入到mysql中
6. 在flask文件夹下,运行manage.py,打开本地连接即可

## 附录

更多api请参考https://github.com/SocialSisterYi/bilibili-API-collect

相关接口,mid是账号的uid,样例mid采取163004010

- 获取用户详细信息(只需修改mid的值)

```
https://api.bilibili.com/x/space/acc/info?mid=163004010
```

- 获取uid的粉丝列表(只需修改vmid的值)

```
https://api.bilibili.com/x/relation/followers?vmid=163004010&pn=1&ps=200
```

- 获取该uid关注列表中的用户(只需修改vmid的值)

```
https://api.bilibili.com/x/relation/followings?vmid=163004010&pn=1
```

- 获取用户个人主页右上角的总览信息(只需修改mid的值)

```
https://api.bilibili.com/x/space/upstat?mid=163004010&jsonp=jsonp
https://api.bilibili.com/x/relation/stat?vmid=163004010&jsonp=jsonp
```

## Star History

[![Star History Chart](https://api.star-history.com/svg?repos=Nomination-NRB/VisualBilibili&type=Date)](https://star-history.com/#Nomination-NRB/VisualBilibili&Date)