Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/ODAncona/bboxconverter

This library allows reading and converting bounding box annotations in many popular formats
https://github.com/ODAncona/bboxconverter

bounding-boxes computer-vision image-recognition numpy object-detection pandas python pytorch tensorflow train-test-split

Last synced: 2 months ago
JSON representation

This library allows reading and converting bounding box annotations in many popular formats

Awesome Lists containing this project

README

        

bbox logo



Python versions


Total downloads


Monthly downloads


Python versions






Documentation Status




# bboxconverter

bboxconverter is a Python library that enables seamless conversion of bounding box formats between various types and file formats. It provides an easy-to-use syntax for reading and exporting bounding box files.

## Introduction

### What is a bounding box?

Bounding boxes are a crucial component of object detection algorithms, which are used to identify and classify objects within an image or video. A bounding box is a rectangle that surrounds an object of interest in the image, and is typically represented by a set of coordinates that define the box's position and size.

Bounding box example

### Various types and format

When you work with bounding box you have severals things to consider.

The bounding box could be stored in **different types** like:

- Top-Left Bottom-Right (TLBR), (x_min, y_min, x_max, y_max)
- Top-Left Width Height (TLWH), (x_min, y_min, width, height)
- Center Width Height (CWH), (x_center, y_center, width, height)

Which are popular among **different formats** like :

- [COCO](<(http://cocodataset.org/)>) (Common Objects in Context)
- [Pascal VOC](<(http://host.robots.ox.ac.uk/pascal/VOC/)>) (Visual Object Classes)
- [YOLO](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#yolo) (You Only Look Once)

Furthermore, the bounding box could be stored in **different file formats** like:

- csv
- xml
- json
- manifest
- parquet
- pickle

## Installation

```bash
pip install bboxconverter
```

or

```bash
git clone https://github.com/ODAncona/bboxconverter.git
cd bboxconverter
poetry install
```

See the [installation](https://bboxconverter.readthedocs.io/en/latest/guides/installation.html) guide for more informations.

## Usage

The goal of this library is to seamlessly convert bounding box format using easy syntax.

It should be a breeze like...

```python
import bboxconverter as bc

# Input file path
input_path = './examples/example.csv'

# Output file path
output_path = './examples/output/example.json'

# Mapping between the input file and the bboxconverter format
bbox_map = dict(
class_name='class',
file_path='name',
x_min='top_left_x',
y_min='top_left_y',
width='w',
height='h',
image_width='img_size_x',
image_height='img_size_y',
)

# Read the input file
parser = bc.read_csv(input_path, mapping=bbox_map)

# Export the file to the desired format
parser.export(output_path=output_path, format='coco')
parser.export(output_path=output_path, format='voc')
parser.export(output_path=output_path, format='yolo')
```

## Documentation

You can find the documention online at [bboxconvert.readthedoc.io](https://bboxconverter.readthedocs.io/en/latest/index.html)

## Changelog

See the [CHANGELOG](https://github.com/ODAncona/bboxconverter/blob/main/CHANGELOG.md) file for details.

## Contributing

Contributions are welcome! Please read the [contributing guidelines](https://github.com/ODAncona/bboxconverter/blob/main/CONTRIBUTING.md) first.

## License

This project is licensed under the GPLV3 License - see the [LICENSE](https://github.com/ODAncona/bboxconverter/blob/main/LICENSE) file for details.

## Acknowledgments

- [Pascal VOC](http://host.robots.ox.ac.uk/pascal/VOC/)
- [COCO](http://cocodataset.org/#home)
- [YOLO](https://pjreddie.com/darknet/yolo/)
- [Albumentation](https://albumentations.ai/)
- [Pyodi](https://github.com/Gradiant/pyodi)