Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/OldPanda/bloomfilter

Yet another Bloomfilter implementation in Go, compatible with Java's Guava library
https://github.com/OldPanda/bloomfilter

bloomfilter bloomfilter-go golang golang-library

Last synced: 3 months ago
JSON representation

Yet another Bloomfilter implementation in Go, compatible with Java's Guava library

Awesome Lists containing this project

README

        

# bloomfilter

![Build](https://github.com/OldPanda/bloomfilter/actions/workflows/build.yml/badge.svg)
[![codecov](https://codecov.io/gh/OldPanda/bloomfilter/branch/master/graph/badge.svg?token=FCV788SCL7)](https://codecov.io/gh/OldPanda/bloomfilter)
[![Go Reference](https://pkg.go.dev/badge/github.com/OldPanda/bloomfilter.svg)](https://pkg.go.dev/github.com/OldPanda/bloomfilter)
[![Go Report Card](https://goreportcard.com/badge/github.com/OldPanda/bloomfilter)](https://goreportcard.com/report/github.com/OldPanda/bloomfilter)
[![Mentioned in Awesome Go](https://awesome.re/mentioned-badge-flat.svg)](https://github.com/avelino/awesome-go)

## Overview

Yet another Bloomfilter implementation in Go, compatible with Java's Guava library. This library borrows how [Java's Guava libraray](https://guava.dev/) implements Bloomfilter hashing strategies to achieve the serialization compatibility.

## Installing

First pull the latest version of the library:

```
go get github.com/OldPanda/bloomfilter
```

Then import the this library in your code:

```
import "github.com/OldPanda/bloomfilter"
```

## Usage Examples

### Basic Usage

```Go
package main

import (
"fmt"

"github.com/OldPanda/bloomfilter"
)

func main() {
// create bloomfilter with expected insertion=500, error rate=0.01
bf, _ := bloomfilter.NewBloomFilter(500, 0.01)
// add number 0~199 into bloomfilter
for i := 0; i < 200; i++ {
bf.Put(i)
}

// check if number 100 and 200 are in bloomfilter
fmt.Println(bf.MightContain(100))
fmt.Println(bf.MightContain(200))
}
```

### Serialization

```Go
package main

import "github.com/OldPanda/bloomfilter"

func main() {
// expected insertion=500, error rate=0.01
bf, _ := bloomfilter.NewBloomFilter(500, 0.01)
// add 0~199 into bloomfilter
for i := 0; i < 200; i++ {
bf.Put(i)
}

// serialize bloomfilter to byte array
bytes := bf.ToBytes()
// handling the bytes ...
}
```

### Deserialization

```Go
package main

import (
"fmt"

"github.com/OldPanda/bloomfilter"
)

func main() {
// create bloomfilter from byte array
bf, _ := bloomfilter.FromBytes(bytes)
// check whether number 100 is in bloomfilter
fmt.Println(bf.MightContain(100))
}
```

## Benchmark

The benchmark testing runs on element insertion and query separately.

```Bash
» go test -bench . -benchmem ./...
# github.com/OldPanda/bloomfilter.test
goos: darwin
goarch: arm64
pkg: github.com/OldPanda/bloomfilter
BenchmarkBloomfilterInsertion-12 11091939 90.62 ns/op 17 B/op 1 allocs/op
BenchmarkBloomfilterQuery-12 20389624 53.16 ns/op 15 B/op 1 allocs/op
BenchmarkBloomfilterDeserialization-12 293098 3767 ns/op 13200 B/op 52 allocs/op
PASS
ok github.com/OldPanda/bloomfilter 3.719s
```