Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/Omaraitbenhaddi/ODC-World-Cup-2022-Predictions
Predict who will win the FIFA World Cup 2022
https://github.com/Omaraitbenhaddi/ODC-World-Cup-2022-Predictions
django fifa machine-learning worldcup2022 xgboost
Last synced: about 1 month ago
JSON representation
Predict who will win the FIFA World Cup 2022
- Host: GitHub
- URL: https://github.com/Omaraitbenhaddi/ODC-World-Cup-2022-Predictions
- Owner: Omaraitbenhaddi
- License: apache-2.0
- Created: 2022-09-21T08:39:07.000Z (about 2 years ago)
- Default Branch: main
- Last Pushed: 2022-11-19T21:44:59.000Z (about 2 years ago)
- Last Synced: 2024-08-02T13:24:21.337Z (4 months ago)
- Topics: django, fifa, machine-learning, worldcup2022, xgboost
- Language: Jupyter Notebook
- Homepage:
- Size: 5.19 MB
- Stars: 8
- Watchers: 2
- Forks: 2
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- License: license
Awesome Lists containing this project
- awesome-morocco - ODC-World-Cup-2022-Predictions - World-Cup-2022-Predictions.svg?style=social)](https://github.com/Omaraitbenhaddi/ODC-World-Cup-2022-Predictions/stargazers) - Prediction of the winner of an international matches Prediction results are "Win / Lose / Draw" and Apply the model to predict the result of FIFA world cup 2022 by [@Omaraitbenhaddi](https://github.com/Omaraitbenhaddi) (Uncategorized / Uncategorized)
README
# ODC-World-Cup-2022-Predictions
# Project Description
__Objective__:
- Prediction of the winner of an international matches Prediction results are "Win / Lose / Draw"
- Apply the model to predict the result of FIFA world cup 2022.__Data__:
-Nous avons les rangs FIFA de 1993 à 2018 donnés par
https://www.kaggle.com/datasets/tadhgfitzgerald/fifa-international-soccer-mens-ranking-1993now- Nous avons les rangs FIFA de 1992-2022
https://www.kaggle.com/datasets/cashncarry/fifaworldranking-L’historique des matches de football depuis 1872 donné par
https://www.kaggle.com/datasets/martj42/international-football-results-from-1872-to-2017-Les statistiques de chaque équipe depuis 2018 tirées de Wikipédia
https://en.wikipedia.org/wiki/National_team_appearances_in_the_FIFA_World_Cup#Overall_team_records-Les statistiques des joueurs tirées de
https://www.kaggle.com/antoinekrajnc/soccer-players-statistics-Fifa index
https://www.fifaindex.com/fr/team/1335/france/fifa23/-Football nations Stats
https://fbref.com/en/countries/
-Football nations Stats https://fbref.com/en/countries/-Players data to scrap https://fbref.com/en/players/e42d61c7/Achraf-Hakimi
__Environment and tools__
1. Jupyter Notebook
2. Numpy
3. Pandas
4. Seaborn
5. Matplotlib
6. Scikit-learn
7. xgboost
8. scipy
9. joblibwe chose XGBoost in model and got an accuracy of 78% on the training set and 63% accuracy on the test set
__Lifecycle__
![](https://github.com/mrthlinh/FIFA-World-Cup-Prediction/blob/master/pic/life_cycle.png)
__site web__
https://world-cup-2022-predictions.herokuapp.com/