Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/OpenMined/PySyft
Perform data science on data that remains in someone else's server
https://github.com/OpenMined/PySyft
cryptography deep-learning federated-learning hacktoberfest privacy python pytorch secure-computation syft
Last synced: about 2 months ago
JSON representation
Perform data science on data that remains in someone else's server
- Host: GitHub
- URL: https://github.com/OpenMined/PySyft
- Owner: OpenMined
- License: apache-2.0
- Created: 2017-07-18T20:41:16.000Z (over 7 years ago)
- Default Branch: dev
- Last Pushed: 2024-04-13T10:25:01.000Z (8 months ago)
- Last Synced: 2024-04-14T07:14:40.214Z (8 months ago)
- Topics: cryptography, deep-learning, federated-learning, hacktoberfest, privacy, python, pytorch, secure-computation, syft
- Language: Python
- Homepage: https://www.openmined.org/
- Size: 648 MB
- Stars: 9,226
- Watchers: 199
- Forks: 1,976
- Open Issues: 25
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-ppml - PySyft - encrypted, privacy preserving machine learning in PyTorch and TensorFlow (Software)
- awesome-privacy-engineering - PySyft - PySyft is a Python library for secure and private Deep Learning. (Awesome Privacy Engineering [![Awesome](https://awesome.re/badge.svg)](https://awesome.re) / Differential Privacy and Federated Learning)
- awesome-starts - OpenMined/PySyft - A library for answering questions using data you cannot see (Python)
- FLsystem-paper - `Github`
- Aweome-Heathcare-Federated-Learning - [Code
- awesome-production-machine-learning - PySyft - A Python library for secure, private Deep Learning. PySyft decouples private data from model training, using Multi-Party Computation (MPC) within PyTorch. (Privacy Preserving Machine Learning)
- Awesome-AIML-Data-Ops - PySyft - A Python library for secure, private Deep Learning. PySyft decouples private data from model training, using Multi-Party Computation (MPC) within PyTorch. (Privacy Preserving Machine Learning)
- awesome-list - PySyft - Data science on data without acquiring a copy. (Data Management & Processing / Database & Cloud Management)
- Pop_OS-Guide - PySyft - learning-collaborative.html), [Differential Privacy](https://www.microsoft.com/en-us/ai/ai-lab-differential-privacy), and Encrypted Computation (like [Multi-Party Computation (MPC)](https://multiparty.org) and [Homomorphic Encryption (HE)](https://www.microsoft.com/en-us/research/project/homomorphic-encryption/) within the main Deep Learning frameworks like [PyTorch](https://pytorch.org/) and [TensorFlow](https://www.tensorflow.org/). (Tools / Winetricks)
- Zorin-OS-Guide - PySyft - learning-collaborative.html), [Differential Privacy](https://www.microsoft.com/en-us/ai/ai-lab-differential-privacy), and Encrypted Computation (like [Multi-Party Computation (MPC)](https://multiparty.org) and [Homomorphic Encryption (HE)](https://www.microsoft.com/en-us/research/project/homomorphic-encryption/) within the main Deep Learning frameworks like [PyTorch](https://pytorch.org/) and [TensorFlow](https://www.tensorflow.org/). (Tools)
- Linux-Mint-Guide - PySyft - learning-collaborative.html), [Differential Privacy](https://www.microsoft.com/en-us/ai/ai-lab-differential-privacy), and Encrypted Computation (like [Multi-Party Computation (MPC)](https://multiparty.org) and [Homomorphic Encryption (HE)](https://www.microsoft.com/en-us/research/project/homomorphic-encryption/) within the main Deep Learning frameworks like [PyTorch](https://pytorch.org/) and [TensorFlow](https://www.tensorflow.org/). (Tools)
- macOS-iOS-iPadOS-Guide - PySyft - learning-collaborative.html), [Differential Privacy](https://www.microsoft.com/en-us/ai/ai-lab-differential-privacy), and Encrypted Computation (like [Multi-Party Computation (MPC)](https://multiparty.org) and [Homomorphic Encryption (HE)](https://www.microsoft.com/en-us/research/project/homomorphic-encryption/) within the main Deep Learning frameworks like [PyTorch](https://pytorch.org/) and [TensorFlow](https://www.tensorflow.org/). (Tools / Objective-C Tools, Libraries, and Frameworks)
- awesome-production-machine-learning - PySyft - A Python library for secure, private Deep Learning. PySyft decouples private data from model training, using Multi-Party Computation (MPC) within PyTorch. (Privacy and Security)
- awesome-federated-computing - PySyft - Github - The PyTorch based library. (Libraries/Frameworks / 2015)
- awesome-federated-learning - [Github
- SUSE-openSUSE-Guide - PySyft - learning-collaborative.html), [Differential Privacy](https://www.microsoft.com/en-us/ai/ai-lab-differential-privacy), and Encrypted Computation (like [Multi-Party Computation (MPC)](https://multiparty.org) and [Homomorphic Encryption (HE)](https://www.microsoft.com/en-us/research/project/homomorphic-encryption/) within the main Deep Learning frameworks like [PyTorch](https://pytorch.org/) and [TensorFlow](https://www.tensorflow.org/). (Tools)
- awesome-asynchronous-federated-learning - PySyft - 3-030-70604-3_5) (Libraries(Which support Asynchronous Federated Learning) / 2018)
- Debian-Guide - PySyft - learning-collaborative.html), [Differential Privacy](https://www.microsoft.com/en-us/ai/ai-lab-differential-privacy), and Encrypted Computation (like [Multi-Party Computation (MPC)](https://multiparty.org) and [Homomorphic Encryption (HE)](https://www.microsoft.com/en-us/research/project/homomorphic-encryption/) within the main Deep Learning frameworks like [PyTorch](https://pytorch.org/) and [TensorFlow](https://www.tensorflow.org/). (Tools)
- awesome-he - PySyft - Python library for the server/IoT part of the OpenMined's open-source ecosystem. (Applications)
- awesome-google-colab - PySyft - A library for encrypted, privacy preserving machine learning (Technologies)
- awesome-python-machine-learning-resources - GitHub - 1% open · ⏱️ 25.08.2022): (隐私机器学习)
- StarryDivineSky - OpenMined/PySyft