Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/PavelKisliak/BitSerializer

Multi-format serialization library (JSON, XML, YAML, CSV, MsgPack)
https://github.com/PavelKisliak/BitSerializer

csv json messagepack msgpack serialization xml yaml

Last synced: 2 days ago
JSON representation

Multi-format serialization library (JSON, XML, YAML, CSV, MsgPack)

Awesome Lists containing this project

README

        

# BitSerializer ![Generic badge](https://img.shields.io/badge/Release-v0.75-blue) [![Vcpkg Version](https://img.shields.io/vcpkg/v/bitserializer?color=blue)](https://vcpkg.link/ports/bitserializer) [![Conan Center](https://img.shields.io/conan/v/bitserializer?color=blue)](https://conan.io/center/recipes/bitserializer) [![MIT license](https://img.shields.io/badge/License-MIT-blue.svg)](license.txt) [![Build Status](https://dev.azure.com/real0793/BitSerializer/_apis/build/status%2FGitHub-BitSerializer?branchName=master)](https://dev.azure.com/real0793/BitSerializer/_build/latest?definitionId=5&branchName=master)

___

### Main features:
- One common interface for all formats - easily switch between human-readable JSON and fast MsgPack.
- Modular architecture, no need to install all archives.
- Functional serialization style similar to the Boost library.
- Customizable validation of deserialized values with producing an output list of errors.
- Configurable set of policies to control overflow and type mismatch errors.
- Support loading named fields in any order with conditions (for preserve compatibility when updating models).
- Serialization support for almost all STD containers and types (including Unicode strings like `std::u16string`).
- Support for serializing enum types as integers or strings as you wish.
- Support serialization to memory, streams and files.
- Full Unicode support with automatic detection and transcoding (except YAML).
- Useful [string conversion submodule](docs/bitserializer_convert.md) (supports enums, classes, chrono, UTF encoding).

#### Supported formats:
| Component | Format | Encoding | Pretty format | Based on |
| ------ | ------ | ------ |:------:| ------ |
| [rapidjson-archive](docs/bitserializer_rapidjson.md) | JSON | UTF-8, UTF-16LE, UTF-16BE, UTF-32LE, UTF-32BE | ✅ | [RapidJson](https://github.com/Tencent/rapidjson) |
| [pugixml-archive](docs/bitserializer_pugixml.md) | XML | UTF-8, UTF-16LE, UTF-16BE, UTF-32LE, UTF-32BE | ✅ | [PugiXml](https://github.com/zeux/pugixml) |
| [rapidyaml-archive](docs/bitserializer_rapidyaml.md) | YAML | UTF-8 | N/A | [RapidYAML](https://github.com/biojppm/rapidyaml) |
| [csv-archive](docs/bitserializer_csv.md) | CSV | UTF-8, UTF-16LE, UTF-16BE, UTF-32LE, UTF-32BE | N/A | Built-in |
| [msgpack-archive](docs/bitserializer_msgpack.md) | MsgPack | Binary | N/A | Built-in |

#### Requirements:
- C++ 17 (VS2017*, GCC-8, CLang-8, AppleCLang-12).
- Supported platforms: Windows, Linux, MacOS (x86, x64, arm, arm64, arm64be**).
- JSON, XML and YAML archives are based on third-party libraries (there are plans to reduce dependencies).

(\*) Minimal requirement for RapidYaml archive is VS2019.\
(\*\*) The RapidYaml archive is unstable on ARM architecture.

#### Limitations:
- Work without exceptions is not supported.

### Performance
For check performance overhead, was developed a single thread test that serializes a model via the BitSerializer and via the API provided by base libraries. The model for tests includes a various types that are supported by all formats.

| Base library name | Format | Operation | BitSerializer | Native API | Difference |
| ------ | ------ | ------ | ------ | ------ | ------ |
| RapidJson | JSON | Save object | 13636 fields/ms | 13866 fields/ms | **(-1.7%)** |
| RapidJson | JSON | Load object | 8639 fields/ms | 8967 fields/ms | **(-3.7%)** |
| PugiXml | XML | Save object | 9910 fields/ms | 9851 fields/ms | **(+0.6%)** |
| PugiXml | XML | Load object | 14602 fields/ms | 15942 fields/ms | **(-8.4%)** |
| RapidYAML | YAML | Save object | 1689 fields/ms | 1737 fields/ms | **(-2.8%)** |
| RapidYAML | YAML | Load object | 3226 fields/ms | 3481 fields/ms | **(-7.3%)** |
| Built-in | CSV | Save object | 33000 fields/ms | N/A | N/A |
| Built-in | CSV | Load object | 15278 fields/ms | N/A | N/A |
| Built-in | MsgPack | Save object | 75000 fields/ms | N/A | N/A |
| Built-in | MsgPack | Load object | 48529 fields/ms | N/A | N/A |

Measured in **fields/ms** - how many fields are written per millisecond, more is better. Results are depend to system hardware and compiler options, but you can evaluate the BitSerializer overhead and formats efficiency. The source code of the test also available [here](benchmarks/archives).

___
## Table of contents
- [How to install](#how-to-install)
- [Hello world](#hello-world)
- [Unicode support](#unicode-support)
- [Serializing class](#serializing-class)
- [Serializing base class](#serializing-base-class)
- [Serializing third party class](#serializing-third-party-class)
- [Serializing class that represent an array](#serializing-class-that-represent-an-array)
- [Serializing custom class representing a string](#serializing-custom-class-representing-a-string)
- [Serializing enum types](#serializing-enum-types)
- [Serializing to multiple formats](#serializing-to-multiple-formats)
- [Serialization STD types](#serialization-std-types)
- [Specifics of serialization STD map](#specifics-of-serialization-std-map)
- [Serialization date and time](#serialization-date-and-time)
- [Conditional loading and versioning](#conditional-loading-and-versioning)
- [Serialization to streams and files](#serialization-to-streams-and-files)
- [Error handling](#error-handling)
- [Validation of deserialized values](#validation-of-deserialized-values)
- [Compile time checking](#compile-time-checking)
- [What else to read](#what-else-to-read)
- [Thanks](#thanks)

___

### How to install
Some archives (JSON, XML and YAML) require third-party libraries, but you can install only the ones which you need.
The easiest way is to use one of supported package managers, in this case, third-party libraries will be installed automatically.
Please follow [instructions](#what-else-to-read) for specific archives.
#### VCPKG
Just add BitSerializer to manifest file (`vcpkg.json`) in your project:
```json
{
"dependencies": [
{
"name": "bitserializer",
"features": [ "rapidjson-archive", "pugixml-archive", "rapidyaml-archive", "csv-archive", "msgpack-archive" ]
}
]
}
```
Enumerate features which you need, by default all are disabled. Use like as usual in the [Cmake](#how-to-use-with-cmake).

Alternatively, you can install the library via the command line:
```shell
> vcpkg install bitserializer[rapidjson-archive,pugixml-archive,rapidyaml-archive,csv-archive,msgpack-archive]
```
In the square brackets enumerated all available formats, install only which you need.
#### Conan 2
The recipe of BitSerializer is available on [Conan-center](https://github.com/conan-io/conan-center-index), just add BitSerializer to `conanfile.txt` in your project and enable archives which you need via options (by default all are disabled):
```
[requires]
bitserializer/0.75

[options]
bitserializer/*:with_rapidjson=True
bitserializer/*:with_pugixml=True
bitserializer/*:with_rapidyaml=True
bitserializer/*:with_csv=True
bitserializer/*:with_msgpack=True
```
#### Installation via CMake on a Unix system
```sh
$ git clone https://github.com/PavelKisliak/BitSerializer.git
$ # Enable only archives which you need (by default all are disabled)
$ cmake bitserializer -B bitserializer/build -DBUILD_RAPIDJSON_ARCHIVE=ON -DBUILD_PUGIXML_ARCHIVE=ON -DBUILD_RAPIDYAML_ARCHIVE=ON -DBUILD_CSV_ARCHIVE=ON -DBUILD_MSGPACK_ARCHIVE=ON
$ sudo cmake --build bitserializer/build --config Debug --target install
$ sudo cmake --build bitserializer/build --config Release --target install
```
You will also need to install dev-packages of base libraries, currently available only `rapidjson-dev` and `libpugixml-dev`, the rest need to be built manually (CSV and MsgPack archives do not require any dependencies).

#### How to use with CMake
```cmake
find_package(bitserializer CONFIG REQUIRED)
# Link only archives which you need
target_link_libraries(${PROJECT_NAME} PRIVATE
BitSerializer::rapidjson-archive
BitSerializer::pugixml-archive
BitSerializer::rapidyaml-archive
BitSerializer::csv-archive
BitSerializer::msgpack-archive
)
```

### Hello world
Let's get started with traditional and simple "Hello world!" example.
```cpp
#include
#include
#include "bitserializer/bit_serializer.h"
#include "bitserializer/rapidjson_archive.h"

using JsonArchive = BitSerializer::Json::RapidJson::JsonArchive;

int main()
{
std::string expected = "Hello world!";
auto json = BitSerializer::SaveObject(expected);

std::string result;
BitSerializer::LoadObject(result, json);

assert(result == expected);
std::cout << result << std::endl;

return EXIT_SUCCESS;
}
```
[See full sample](samples/hello_world/hello_world.cpp)\
There is no mistake since JSON format supports any type (object, array, number or string) at root level.

### Unicode support
Besides multiple input and output UTF-formats that BitSerializer supports, it also allows to serialize any of `std::basic_string` types, under the hood, they are transcoding to the output format. You also free to use any string type as keys, but remember that transcoding takes additional time and, of course, it is better to give preference to UTF-8 strings, since they are natively supported by all archives. In the example below, we show how BitSerializer allows to play with string types:
```cpp
class TestUnicodeClass
{
public:
template
void Serialize(TArchive& archive)
{
// Serialize UTF-8 string with key in UTF-16
archive << KeyValue(u"Utf16Key", mUtf8StringValue);

// Serialize UTF-16 string with key in UTF-32
archive << KeyValue(U"Utf32Key", mUtf16StringValue);

// Serialize UTF-32 string with key in UTF-8
archive << KeyValue(u8"Utf8Key", mUtf32StringValue);
};

private:
std::string mUtf8StringValue;
std::u16string mUtf16StringValue;
std::u32string mUtf32StringValue;
};
```

### Serializing class
There are two ways to serialize a class:

* Internal public method `Serialize()` - good way for your own classes.
* External static function `SerializeObject()` - used for third party class (no access to sources).

Below example demonstrates how to implement internal serialization method:
```cpp
#include "bitserializer/bit_serializer.h"
#include "bitserializer/rapidjson_archive.h"

using JsonArchive = BitSerializer::Json::RapidJson::JsonArchive;

class TestSimpleClass
{
public:
TestSimpleClass()
: testBool(true)
, testString(L"Hello world!")
{
for (size_t i = 0; i < 3; i++)
{
for (size_t k = 0; k < 2; k++) {
testTwoDimensionArray[i][k] = i * 10 + k;
}
}
}

template
void Serialize(TArchive& archive)
{
using namespace BitSerializer;
archive << KeyValue("TestBool", testBool);
archive << KeyValue("TestString", testString);
archive << KeyValue("TestTwoDimensionArray", testTwoDimensionArray);
};

private:
bool testBool;
std::wstring testString;
size_t testTwoDimensionArray[3][2];
};

int main()
{
auto simpleObj = TestSimpleClass();
auto result = BitSerializer::SaveObject(simpleObj);
return 0;
}
```
Returns result
```json
{
"TestBool": true,
"TestString": "Hello world!",
"TestTwoDimensionArray": [
[0, 1],
[10, 11],
[20, 21]
]
}
```
For serializing a named object please use helper class `KeyValue` which takes `key` and `value` as constructor arguments. Usually the type of key is UTF-8 string, but you are free to use any other convertible type (`std::u16string`, `std::u32string` or any numeric types). For example, MsgPack archive has native support for numbers as keys, they will be converted to string when use with another archive. For get maximum performance, better to avoid any conversions.

### Serializing base class
To serialize the base class, use the helper method `BaseObject()`, like as in the next example.
```cpp
template
void Serialize(TArchive& archive)
{
archive << BaseObject(*this);
archive << KeyValue("TestInt", TestInt);
};
```
One limitation is that the base class must have an internal `Serialize()` method, unfortunately there is no way to use an external `SerialzeObject()`.

### Serializing third party class
As alternative for internal `Serialize()` method also exists approach with defining global functions, it will be useful in next cases:

- Sources of serializing class cannot be modified (for example from third party library).
- When class represents list of some values (such as `std::vector`), see [next chapter](#serializing-class-that-represent-an-array).
- When you would like to override internal serialization, globally defined functions have higher priority.
- When you strongly follow single responsibility principle and wouldn't like to include serialization code into class.

You need to implement `SerializeObject()` in the same namespace as the serializing class, or in `BitSerializer`:
```cpp
class TestThirdPartyClass
{
public:
TestThirdPartyClass(int x, int y) noexcept
: x(x), y(y)
{ }

// Example of public property
int x;

// Example of property that is only accessible via a getter/setter
int GetY() const noexcept { return y; }
void SetY(int y) noexcept { this->y = y; }

private:
int y;
};

// Serializes TestThirdPartyClass.
template
void SerializeObject(TArchive& archive, TestThirdPartyClass& testThirdPartyClass)
{
// Serialize public property
archive << KeyValue("x", testThirdPartyClass.x);

// Serialize private property
if constexpr (TArchive::IsLoading())
{
int y = 0;
archive << KeyValue("y", y);
testThirdPartyClass.SetY(y);
}
else
{
const int y = testThirdPartyClass.GetY();
archive << KeyValue("y", y);
}
}
```
[See full sample](samples/serialize_third_party_class/serialize_third_party_class.cpp)

### Serializing class that represent an array
In this chapter described how to serialize your own class that represent a list of values (similar to `std::vector`).
For this purpose, need to implement a global function `SerializeArray()` in the same namespace as the serializing class, or in `BitSerializer`.

Additionally, BitSerializer wants to know the number of elements in the list.
This is optional for a text archives like JSON, but mandatory for a binary archive like MsgPack since it stores the size prior the array elements.
The size of list can be obtained via one of the following ways:

- Global function `size(const CMyArray&)` in the same namespace as the serializing class (highest priority).
- Standard class method `size()`.
- By enumerating array elements using iterators (like as for `std::forward_list`).

So, in case if your class has a different signature for the size getter than `size()`, then you need to implement it as a global function.

⚠ In the latest released version of BitSerializer (0.75) incorrectly detecting internal `size()` method (if it's not in the `std` namespace), you need to implement it externally.

Please take a look at the following example:
```cpp
// Some custom array type
template
class CMyArray
{
public:
CMyArray() = default;
CMyArray(std::initializer_list initList)
: mArray(initList)
{ }

[[nodiscard]] size_t GetSize() const noexcept { return mArray.size(); }
void Resize(size_t newSize) { mArray.resize(newSize); }

[[nodiscard]] const T& At(size_t index) const { return mArray.at(index); }
[[nodiscard]] T& At(size_t index) { return mArray.at(index); }

T& PushBack(T&& value) { return mArray.emplace_back(std::forward(value)); }

private:
std::vector mArray;
};

// Returns the size of the CMyArray.
template
size_t size(const CMyArray& cont) noexcept { return cont.GetSize(); }

// Serializes CMyArray.
template
void SerializeArray(TArchive& arrayScope, CMyArray& cont)
{
if constexpr (TArchive::IsLoading())
{
// Resize container when approximate size is known
if (const auto estimatedSize = arrayScope.GetEstimatedSize(); estimatedSize != 0 && cont.GetSize() < estimatedSize) {
cont.Resize(estimatedSize);
}

// Load
size_t loadedItems = 0;
for (; !arrayScope.IsEnd(); ++loadedItems)
{
TValue& value = (loadedItems < cont.GetSize()) ? cont.At(loadedItems) : cont.PushBack({});
Serialize(arrayScope, value);
}
// Resize container for case when loaded items less than there are or were estimated
cont.Resize(loadedItems);
}
else
{
for (size_t i = 0; i < cont.GetSize(); ++i)
{
Serialize(arrayScope, cont.At(i));
}
}
}
```
[See full sample](samples/serialize_custom_array/serialize_custom_array.cpp)

Additional recommendations:
- Don't clear arrays, prefer loading values into existing elements (for better performance).
- Resize array before loading if estimated size is not zero (but please keep in mind that the actual size may vary).
- For fixed size arrays, always check the size of the array and the elements actually loaded (throw an exception if they differ).
- Use [std containers serialization implementation](include/bitserializer/types/std) as examples.

### Serializing custom class representing a string
Most frameworks/engines have their own implementation of the string type, and most likely you will want to add support for serializing these types.
BitSerializer allows you to do this in a simple and efficient way by using `std::basic_string_view<>` as an intermediate type (supported any char type).

Let's imagine that you would like to implement serialization of your own `std::string` alternative, which is called `CMyString`.
For this purpose you would need two global functions in the same namespace as the serializing class, or in `BitSerializer`:
```cpp
template
bool Serialize(TArchive& archive, TKey&& key, CMyString& value);

template
bool Serialize(TArchive& archive, CMyString& value);
```
These two functions are necessary for serialization any type with and without **key** into the output archive.
For example, object in the JSON format, has named properties, but JSON-array can contain only values.

Additionally, you will need to implement string conversion methods, please read more about ([convert sub-module](docs/bitserializer_convert.md)).
They will add support for using string types as keys, for example it will allow serialization of `std::map` where `CMyString` is used as a key.

This all looks a bit more complicated than serializing an object, but the code is pretty simple, please have a look at the example below:
```cpp
// Some custom string type
class CMyString
{
public:
CMyString() = default;
CMyString(const char* str) : mString(str) { }

bool operator<(const CMyString& rhs) const { return this->mString < rhs.mString; }

const char* data() const noexcept { return mString.data(); }
size_t size() const noexcept { return mString.size(); }

// Required methods for conversion from/to std::string (can be implemented as external functions)
std::string ToString() const { return mString; }
void FromString(std::string_view str) { mString = str; }

private:
std::string mString;
};

// Serializes CMyString with key
template
bool Serialize(TArchive& archive, TKey&& key, CMyString& value)
{
if constexpr (TArchive::IsLoading())
{
std::string_view stringView;
if (Detail::SerializeString(archive, std::forward(key), stringView))
{
value.FromString(stringView);
return true;
}
}
else
{
std::string_view stringView(value.data(), value.size());
return Detail::SerializeString(archive, std::forward(key), stringView);
}
return false;
}

// Serializes CMyString without key
template
bool Serialize(TArchive& archive, CMyString& value)
{
if constexpr (TArchive::IsLoading())
{
std::string_view stringView;
if (Detail::SerializeString(archive, stringView))
{
value.FromString(stringView);
return true;
}
}
else
{
std::string_view stringView(value.data(), value.size());
return Detail::SerializeString(archive, stringView);
}
return false;
}

int main()
{
// Save list of custom strings to JSON
std::vector srcStrList = { "Red", "Green", "Blue" };
std::string jsonResult;
SerializationOptions serializationOptions;
serializationOptions.formatOptions.enableFormat = true;
BitSerializer::SaveObject(srcStrList, jsonResult, serializationOptions);
std::cout << "Saved JSON: " << jsonResult << std::endl;

// Load JSON-object to std::map based on custom strings
std::map mapResult;
const std::string srcJson = R"({ "Background": "Blue", "PenColor": "White", "PenSize": "3", "PenOpacity": "50" })";
BitSerializer::LoadObject(mapResult, srcJson);
std::cout << std::endl << "Loaded map: " << std::endl;
for (const auto& val : mapResult)
{
std::cout << "\t" << val.first.ToString() << ": " << val.second.ToString() << std::endl;
}

return 0;
}
```
[See full sample](samples/serialize_custom_string/serialize_custom_string.cpp)

### Serializing enum types
Enum types can be serialized as integers or as strings, as you prefer.
By default, they serializing as strings, to serialize as integers, use the `EnumAsBin` wrapper:
```cpp
archive << MakeKeyValue("EnumValue", EnumAsBin(enumValue));
```
To be able to serialize `enum` types as string, you need to register a map with string equivalents in the your HEADER file.
```cpp
// file HttpMethods.h
#pragma once
#include "bitserializer\string_conversion.h"

enum class HttpMethod {
Delete = 1,
Get = 2,
Head = 3
};

REGISTER_ENUM(HttpMethod, {
{ HttpMethod::Delete, "delete" },
{ HttpMethod::Get, "get" },
{ HttpMethod::Head, "head" }
})
```

### Serializing to multiple formats
One of the advantages of BitSerializer is the ability to serialize into multiple formats through a single interface. The following example shows how to save an object to JSON and XML:
```cpp
class CPoint
{
public:
CPoint(int x, int y)
: x(x), y(y)
{ }

template
void Serialize(TArchive& archive)
{
archive << KeyValue("x", x);
archive << KeyValue("y", y);
}

int x, y;
};

int main()
{
auto testObj = CPoint(100, 200);

const auto jsonResult = BitSerializer::SaveObject(testObj);
std::cout << "JSON: " << jsonResult << std::endl;

const auto xmlResult = BitSerializer::SaveObject(testObj);
std::cout << "XML: " << xmlResult << std::endl;
return 0;
}
```
The output result of this code:
```
JSON: {"x":100,"y":200}
XML: 100200
```
The serialization code differs only in the template parameter - **JsonArchive** and **XmlArchive**.
But here are some moments which need comments. As you can see in the XML was created node with name "root". This is auto generated name when it was not specified explicitly for root node. The library does this just to smooth out differences in the structure of formats. But you are free to set name of root node if needed:
```cpp
const auto xmlResult = BitSerializer::SaveObject(KeyValue("Point", testObj));
```
The second thing which you would like to customize is default structure of output XML. In this example it does not looks good from XML perspective, as it has specific element for this purpose which known as "attribute". The BitSerializer also allow to customize the serialization behavior for different formats:
```cpp
template
void Serialize(TArchive& archive)
{
// Serialize as attributes when archive type is XML
if constexpr (TArchive::archive_type == ArchiveType::Xml)
{
archive << MakeAutoAttributeValue("x", x);
archive << MakeAutoAttributeValue("y", y);
}
else
{
archive << KeyValue("x", x);
archive << KeyValue("y", y);
}
}
```
With these changes, the result of this code will look like this:
```
JSON: {"x":100,"y":200}
XML:
```
[See full sample](samples/multiformat_customization/multiformat_customization.cpp)

### Serialization STD types
BitSerializer has built-in serialization for all STD containers and most other commonly used types. For add support of required STD type just need to include related header file.
| Types | Header |
| ------ | ------ |
| std::basic_string<>, std::pmr::basic_string<> | Part of the basic package |
| std::byte | Part of the basic package |
| std::atomic | #include "bitserializer/types/std/atomic.h" |
| std::array | #include "bitserializer/types/std/array.h" |
| std::vector, std::pmr::vector | #include "bitserializer/types/std/vector.h" |
| std::deque, std::pmr::deque | #include "bitserializer/types/std/deque.h" |
| std::bitset | #include "bitserializer/types/std/bitset.h" |
| std::list, std::pmr::list | #include "bitserializer/types/std/list.h" |
| std::forward_list, std::pmr::forward_list | #include "bitserializer/types/std/forward_list.h" |
| std::queue, std::priority_queue | #include "bitserializer/types/std/queue.h" |
| std::stack | #include "bitserializer/types/std/stack.h" |
| std::set, std::multiset, std::pmr::set, std::pmr::multiset | #include "bitserializer/types/std/set.h" |
| std::unordered_set, std::unordered_multiset,
std::pmr::unordered_set, std::pmr::unordered_multiset | #include "bitserializer/types/std/unordered_set.h" |
| std::map, std::multimap, std::pmr::map, std::pmr::multimap | #include "bitserializer/types/std/map.h" |
| std::unordered_map, std::unordered_multimap,
std::pmr::unordered_map, std::pmr::unordered_multimap | #include "bitserializer/types/std/unordered_map.h" |
| std::valarray | #include "bitserializer/types/std/valarray.h" |
| std::pair | #include "bitserializer/types/std/pair.h" |
| std::tuple | #include "bitserializer/types/std/tuple.h" |
| std::optional | #include "bitserializer/types/std/optional.h" |
| std::unique_ptr, std::shared_ptr | #include "bitserializer/types/std/memory.h" |
| std::chrono::time_point, std::chrono::time_point | #include "bitserializer/types/std/chrono.h" |
| std::time_t | #include "bitserializer/types/std/ctime.h" |
| std::filesystem::path | #include "bitserializer/types/std/filesystem.h" |

Few words about serialization smart pointers. There is no any system footprints in output archive, for example empty smart pointer will be serialized as `NULL` type in JSON or in any other suitable way for other archive types. When an object is loading into an empty smart pointer, it will be created, and vice versa, when the loaded object is `NULL` or does not exist, the smart pointer will be reset. Polymorphism are not supported you should take care about such types by yourself.

### Specifics of serialization STD map
BitSerializer does not add any system information when saving the map, for example serialization to JSON would look like this:
```cpp
std::map testMap =
{ { "One", 1 }, { "Two", 2 }, { "Three", 3 }, { "Four", 4 }, { "Five", 5 } };
auto jsonResult = BitSerializer::SaveObject(testMap);
```
Returns result
```json
{
"Five": 5,
"Four": 4,
"One": 1,
"Three": 3,
"Two": 2
}
```

Below is a more complex example, where loading a vector of maps from JSON.
```json
[{
"One": 1,
"Three": 3,
"Two": 2
}, {
"Five": 5,
"Four": 4
}]
```
Code:
```cpp
std::vector> testVectorOfMaps;
const std::string inputJson = R"([{"One":1,"Three":3,"Two":2},{"Five":5,"Four":4}])";
BitSerializer::LoadObject(testVectorOfMaps, inputJson);
```

Since all of the most well-known text formats (such as JSON) allow only text keys, BitSerializer attempts to convert the map key to a string (except binary formats like MsgPack).
Out of the box, the library supports all the fundamental types (e.g. `bool`, `int`, `float`) as well as some of the `std` ones (`filesystem::path`, `chrono::timepoint`, etc), but if you want to use your own type as the key, you need to implement the conversion to a string. There are several options with internal and external functions, see details [here](docs\bitserializer_convert.md). For example, you can implement two internal methods in your type:
```cpp
class YourCustomKey
{
std::string ToString() const { }
void FromString(std::string_view str)
}
```

### Serialization date and time
*(Feature is not available in the previously released version 0.50)*

The ISO 8601 standard was chosen as the representation for the date, time and duration for text type of archives (JSON, XML, YAML, CSV). The MsgPack archive has its own compact time format. For enable serialization of the `std::chrono` and `time_t`, just include these headers:
```cpp
#include "bitserializer/types/std/chrono.h"
#include "bitserializer/types/std/ctime.h"
```

The following table contains all supported types with examples of string representations:

| Type | Format | Examples | References |
| ------ | ------ | ------ | ------ |
| `std::time_t` | YYYY-MM-DDThh:mm:ssZ | 1677-09-21T00:12:44Z
2262-04-11T23:47:16Z | [ISO 8601/UTC](https://en.wikipedia.org/wiki/ISO_8601) |
| `chrono::time_point` | [±]YYYY-MM-DDThh:mm:ss[.SSS]Z | 1872-01-01T04:55:32.021Z
2262-04-11T23:47:16Z
9999-12-31T23:59:59.999Z
+12376-01-20T00:00:00Z
-1241-06-23T00:00:00Z | [ISO 8601/UTC](https://en.wikipedia.org/wiki/ISO_8601) |
| `chrono::duration` | [±]PnWnDTnHnMnS | P125DT55M41S
PT10H20.346S
P10DT25M
P35W5D | [ISO 8601/Duration](https://en.wikipedia.org/wiki/ISO_8601#Durations) |

Time point notes:
- Only UTC representation is supported, fractions of a second are optional ([±]YYYY-MM-DDThh:mm:ss[.SSS]Z).
- ISO-8601 doesn't specify precision for fractions of second, BitSerializer supports up to 9 digits, which is enough for values with nanosecond precision.
- Both decimal separators (dot and comma) are supported for fractions of a second.
- According to standard, to represent years before 0000 or after 9999 uses additional '-' or '+' sign.
- The date range depends on the `std::chrono::duration` type, for example implementation of `system_clock` on Linux has range **1678...2262 years**.
- Keep in mind that `std::chrono::system_clock` has time point with different duration on Windows and Linux, prefer to store time in custom `time_point` if you need predictable range (e.g. `time_point`).
- According to the C++20 standard, the EPOCH date for `system_clock` types is considered as *1970-01-01 00:00:00 UTC* excluding leap seconds.
- For avoid mistakes, time points with **steady_clock** type are not allowed due to floating EPOCH.
- Allowed rounding only fractions of seconds, in all other cases an exception is thrown (according to `OverflowNumberPolicy`).

Duration notes:
- Supported a sign character at the start of the string (ISO 8601-2 extension).
- Durations which contains years, month, or with base UTC (2003-02-15T00:00:00Z/P2M) are not allowed.
- The decimal fraction supported only for seconds part, maximum 9 digits.
- Both decimal separators (dot and comma) are supported for fractions of a second.
- Allowed rounding only fractions of seconds, in all other cases an exception is thrown (according to `OverflowNumberPolicy`).

Since `std::time_t` is equal to `int64_t`, need to use special wrapper `CTimeRef`, otherwise time will be serialized as number.
```cpp
template
void Serialize(TArchive& archive)
{
archive << KeyValue("Time", CTimeRef(timeValue));
}
```

### Conditional loading and versioning

The functional style of serialization used in BitSerializer has one advantage over the declarative one - you can write branches depending on the data.
To check the current serialization mode, use two static methods - `IsLoading()` and `IsSaving()`. As they are «constexpr», you will not have any overhead.
```cpp
class Foo
public:
template
inline void Serialize(TArchive& archive)
{
if constexpr (TArchive::IsLoading()) {
// Code which executes in loading mode
}
else {
// Code which executes in saving mode
}
}
}
```
This can be most useful when you need to support multiple versions of a model. By default, library does not add any system fields (like as a version of object), but it's not difficult to add version when you will need:
```cpp
// Old version of test object (no needs to keep old models, just as example)
struct TestUserV1
{
std::string name; // Deprecated, need to split to first and last name
uint8_t age{};
uint32_t lastOrderId{}; // Deprecated, need to remove

template
void Serialize(TArchive& archive)
{
archive << KeyValue("name", name, Required());
archive << KeyValue("age", age);
archive << KeyValue("lastOrderId", lastOrderId);
}
};

// Actual model
struct TestUser
{
// Introduce version field
static constexpr int16_t CurrentVersion = 1;

std::string firstName;
std::string lastName;
uint8_t age{};
std::string country;

template
void Serialize(TArchive& archive)
{
// Load 'version' field if exists
int16_t version = TArchive::IsSaving() ? CurrentVersion : 0;
archive << KeyValue("version", version);

if constexpr (TArchive::IsLoading())
{
if (version == 0)
{
// Import name from old format
std::string name;
archive << KeyValue("name", name, Required());
const auto spacePos = name.find(' ');
firstName = name.substr(0, spacePos);
lastName = spacePos != std::string::npos ? name.substr(spacePos + 1) : "";
}
else
{
archive << KeyValue("firstName", firstName, Required());
archive << KeyValue("lastName", lastName, Required());
}
}
archive << KeyValue("age", age);
archive << KeyValue("country", country);
}
};

int main()
{
// Save old version
std::vector oldUsers {
{ "John Smith", 35, 1254 },
{ "Emily Roberts", 27, 4546 },
{ "James Murphy", 32, 10653 }
};
const auto archive = BitSerializer::SaveObject(oldUsers);

// Loading with import to new version
std::vector newUsers;
BitSerializer::LoadObject(newUsers, archive);

return 0;
}
```
[See full sample](samples/versioning/versioning.cpp)

### Serialization to streams and files
All archives in the BitSerializer support streams as well as serialization to files. In comparison to serialization to `std::string`, streams/files also supports UTF encodings.
BitSerializer can detect encoding of input stream by BOM ([Byte order mark](https://en.wikipedia.org/wiki/Byte_order_mark)) and via data analysis, but last is only supported by RapidJson, PugiXml and CSV archives. The output encoding and BOM is configurable via `SerializationOptions`.
The following example shows how to save/load to `std::stream`:
```cpp
class CPoint
{
public:
CPoint() = default;
CPoint(int x, int y)
: x(x), y(y)
{ }

template
void Serialize(TArchive& archive)
{
archive << KeyValue("x", x);
archive << KeyValue("y", y);
}

int x = 0, y = 0;
};

int main()
{
auto testObj = CPoint(100, 200);

SerializationOptions serializationOptions;
serializationOptions.streamOptions.encoding = Convert::Utf::UtfType::Utf8;
serializationOptions.streamOptions.writeBom = false;

// Save to string stream
std::stringstream outputStream;
BitSerializer::SaveObject(testObj, outputStream, serializationOptions);
std::cout << outputStream.str() << std::endl;

// Load from string stream
CPoint loadedObj;
BitSerializer::LoadObject(loadedObj, outputStream);

assert(loadedObj.x == testObj.x && loadedObj.y == testObj.y);
return 0;
}
```
[See full sample](samples/serialize_to_stream/serialize_to_stream.cpp)

For save/load to files, BitSerializer provides the following functions (which are just wrappers of serialization methods to streams):
```cpp
template
BitSerializer::SaveObjectToFile(T&& object, TString&& path, const SerializationOptions& serializationOptions = DefaultOptions, bool overwrite = false);

template
BitSerializer::LoadObjectFromFile(T&& object, TString&& path, const SerializationOptions& serializationOptions = DefaultOptions);
```

### Error handling
First, let's list what are considered as errors and will throw exception:

- Syntax errors in the input source (e.g. JSON)
- When one or more user's validation rules were not passed
- When a type from the archive (source format, like JSON) does not match to the target value (can be configured via `MismatchedTypesPolicy`)
- When an enum type is not registered or its value is invalid
- When size of target type is not enough for loading value (can be configured via `OverflowNumberPolicy`)
- When target array with fixed size does not match the number of loading items
- Invalid configuration in the `SerializationOptions`
- Input/output file can't be opened for read/write
- UTF encoding/decoding errors (can be configured via `UtfEncodingErrorPolicy`)
- Unsupported UTF encoding

By default, any missed field in the input format (e.g. JSON) is not treated as an error, but you can add `Required()` validator if needed.
You can handle `std::exception` just for log errors, but if you need to provide more detailed information to the user, you may need to handle the following exceptions:

- `SerializationException` - base BitSerializer exception, contains `SerializationErrorCode`
- `ParsingException` - contains information about line number or offset (depending on format type)
- `ValidationException` - contains map of fields with validation errors

```cpp
try
{
int testInt;
BitSerializer::LoadObject(testInt, L"10 ?");
}
catch (const BitSerializer::ParsingException& ex)
{
// Parsing error: Malformed token
std::string message = ex.what();
size_t line = ex.Line;
size_t offset = ex.Offset;
}
catch (const BitSerializer::ValidationException& ex)
{
// Handle validation errors
const auto& validationErrors = ex.GetValidationErrors();
}
catch (const std::exception& ex)
{
// Handle any other errors
std::string message = ex.what();
}
```

### Validation of deserialized values
BitSerializer allows to add an arbitrary number of validation rules to the named values, the syntax is quite simple:
```cpp
archive << KeyValue("testFloat", testFloat, Required(), Range(-1.0f, 1.0f));
```
For handle validation errors, need to catch special exception `ValidationException`, it is thrown at the end of deserialization (when all errors have been collected).
By default, the number of errors is unlimited, but it can be set using `maxValidationErrors` in `SerializationOptions`.
The map of validation errors can be get by calling method `GetValidationErrors()` from the exception object, it contains paths to fields with errors lists.
The default error message can be overridden (you can also pass string ID for further localization):
```cpp
archive << KeyValue("Age", mAge, Required("Age is required"), Range(0, 150, "Age should be in the range 0...150"));
```

The list of validators "out of the box" is not so rich, but it will expand in the future.

| Signature | Description |
| ------------------- | --------------------- |
| `Required(errorMessage = nullptr)` | Makes a field as required |
| `Range(min, max, errorMessage = nullptr)` | Validates range of value, can be applied for any type that has operators '<' and '>' (e.g. `std::chrono` types) |
| `MinSize(minSize, errorMessage = nullptr)` | Checks the minimum size of strings, containers and any other types that has `size()` method |
| `MaxSize(maxSize, errorMessage = nullptr)` | Checks the maximum size of strings, containers and any other types that has `size()` method |
| `Email(errorMessage = nullptr)` | The email validator, generally complies with the RFC standard with the exception of: quoted parts, comments, SMTPUTF8 and IP address as domain part |
| `PhoneNumber(minDigits = 7, maxDigits = 15, isPlusRequired = true, errorMessage = nullptr)` | The phone number validator, examples:
+555 (55) 555-55-55, (55) 555 55 55, 555 5 55 55 |

Usage example:
```cpp
using JsonArchive = BitSerializer::Json::RapidJson::JsonArchive;

class UserModel
{
public:
template
void Serialize(TArchive& archive)
{
using namespace BitSerializer;

archive << KeyValue("Id", mId, Required());
archive << KeyValue("Age", mAge, Required("Age is required"), Range(0, 150, "Age should be in the range 0...150"));
archive << KeyValue("FirstName", mFirstName, Required(), MaxSize(16));
archive << KeyValue("LastName", mLastName, Required(), MaxSize(16));
archive << KeyValue("Email", mEmail, Required(), Email());
// Custom validation with lambda
archive << KeyValue("NickName", mNickName, [](const std::string& value, bool isLoaded) -> std::optional
{
// Loaded string should has text without spaces or should be NULL
if (!isLoaded || value.find_first_of(' ') == std::string::npos)
return std::nullopt;
return "The field must not contain spaces";
});
}

private:
uint64_t mId = 0;
uint16_t mAge = 0;
std::string mFirstName;
std::string mLastName;
std::string mEmail;
std::string mNickName;
};

int main()
{
UserModel user;
const char* json = R"({ "Id": 12420, "Age": 500, "FirstName": "John Smith-Cotatonovich", "NickName": "Smith 2000", "Email": "smith [email protected]" })";
try
{
BitSerializer::LoadObject(user, json);
}
catch (BitSerializer::ValidationException& ex)
{
const auto& validationErrors = ex.GetValidationErrors();
std::cout << "Validation errors: " << std::endl;
for (const auto& keyErrors : validationErrors)
{
std::cout << "Path: " << keyErrors.first << std::endl;
for (const auto& err : keyErrors.second)
{
std::cout << "\t" << err << std::endl;
}
}
}
catch (std::exception& ex)
{
std::cout << ex.what();
}

return EXIT_SUCCESS;
}
```
[See full sample](samples/validation/validation.cpp)

The result of execution this code:
```text
Validation errors:
Path: /Age
Age should be in the range 0...150
Path: /Email
Invalid email address
Path: /FirstName
The maximum size of this field should be not greater than 16
Path: /LastName
This field is required
Path: /NickName
The field must not contain spaces
```
Returned paths for invalid values is dependent to archive type, in this sample it's JSON Pointer (RFC 6901).

### Compile time checking
The new C++ 17 ability «if constexpr» helps to generate clear error messages.
If you try to serialize an object that is not supported at the current level of the archive, you will receive a simple error message.
```cpp
template
inline void Serialize(TArchive& archive)
{
// Error C2338 BitSerializer. The archive doesn't support serialize fundamental type without key on this level.
archive << testBool;
// Proper use
archive << KeyValue("testString", testString);
};
```

### What else to read
Each of the supported archives has its own page with details (installation, features, samples, etc.):
- [JSON archive "bitserializer-rapidjson"](docs/bitserializer_rapidjson.md)
- [XML archive "bitserializer-pugixml"](docs/bitserializer_pugixml.md)
- [YAML archive "bitserializer-rapidyaml"](docs/bitserializer_rapidyaml.md)
- [CSV archive "bitserializer-csv"](docs/bitserializer_csv.md)
- [MsgPack archive "bitserializer-msgpack"](docs/bitserializer_msgpack.md)

Additionally, you may want to use the [string conversion submodule](docs/bitserializer_convert.md).

### Thanks
- Artsiom Marozau for developing an archive with support YAML.
- Andrey Mazhyrau for help with cmake scripts, fix GCC and Linux related issues.
- Alexander Stepaniuk for support and participation in technical discussions.
- Evgeniy Gorbachov for help with implementation STD types serialization.
- Mateusz Pusz for code review and useful advices.

----
MIT, Copyright (C) 2018-2025 by Pavel Kisliak, made in Belarus 🇧🇾