Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/PeterL1n/RobustVideoMatting

Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!
https://github.com/PeterL1n/RobustVideoMatting

ai computer-vision deep-learning machine-learning matting

Last synced: 9 days ago
JSON representation

Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Awesome Lists containing this project

README

        

# Robust Video Matting (RVM)

![Teaser](/documentation/image/teaser.gif)

English | 中文

Official repository for the paper [Robust High-Resolution Video Matting with Temporal Guidance](https://peterl1n.github.io/RobustVideoMatting/). RVM is specifically designed for robust human video matting. Unlike existing neural models that process frames as independent images, RVM uses a recurrent neural network to process videos with temporal memory. RVM can perform matting in real-time on any videos without additional inputs. It achieves **4K 76FPS** and **HD 104FPS** on an Nvidia GTX 1080 Ti GPU. The project was developed at [ByteDance Inc.](https://www.bytedance.com/)


## News

* [Nov 03 2021] Fixed a bug in [train.py](https://github.com/PeterL1n/RobustVideoMatting/commit/48effc91576a9e0e7a8519f3da687c0d3522045f).
* [Sep 16 2021] Code is re-released under GPL-3.0 license.
* [Aug 25 2021] Source code and pretrained models are published.
* [Jul 27 2021] Paper is accepted by WACV 2022.


## Showreel
Watch the showreel video ([YouTube](https://youtu.be/Jvzltozpbpk), [Bilibili](https://www.bilibili.com/video/BV1Z3411B7g7/)) to see the model's performance.





All footage in the video are available in [Google Drive](https://drive.google.com/drive/folders/1VFnWwuu-YXDKG-N6vcjK_nL7YZMFapMU?usp=sharing).


## Demo
* [Webcam Demo](https://peterl1n.github.io/RobustVideoMatting/#/demo): Run the model live in your browser. Visualize recurrent states.
* [Colab Demo](https://colab.research.google.com/drive/10z-pNKRnVNsp0Lq9tH1J_XPZ7CBC_uHm?usp=sharing): Test our model on your own videos with free GPU.


## Download

We recommend MobileNetv3 models for most use cases. ResNet50 models are the larger variant with small performance improvements. Our model is available on various inference frameworks. See [inference documentation](documentation/inference.md) for more instructions.



Framework
Download
Notes




PyTorch

rvm_mobilenetv3.pth

rvm_resnet50.pth


Official weights for PyTorch. Doc



TorchHub

Nothing to Download.


Easiest way to use our model in your PyTorch project. Doc



TorchScript

rvm_mobilenetv3_fp32.torchscript

rvm_mobilenetv3_fp16.torchscript

rvm_resnet50_fp32.torchscript

rvm_resnet50_fp16.torchscript


If inference on mobile, consider export int8 quantized models yourself. Doc



ONNX

rvm_mobilenetv3_fp32.onnx

rvm_mobilenetv3_fp16.onnx

rvm_resnet50_fp32.onnx

rvm_resnet50_fp16.onnx


Tested on ONNX Runtime with CPU and CUDA backends. Provided models use opset 12. Doc, Exporter.



TensorFlow

rvm_mobilenetv3_tf.zip

rvm_resnet50_tf.zip


TensorFlow 2 SavedModel. Doc



TensorFlow.js

rvm_mobilenetv3_tfjs_int8.zip



Run the model on the web. Demo, Starter Code



CoreML

rvm_mobilenetv3_1280x720_s0.375_fp16.mlmodel

rvm_mobilenetv3_1280x720_s0.375_int8.mlmodel

rvm_mobilenetv3_1920x1080_s0.25_fp16.mlmodel

rvm_mobilenetv3_1920x1080_s0.25_int8.mlmodel



CoreML does not support dynamic resolution. Other resolutions can be exported yourself. Models require iOS 13+. s denotes downsample_ratio. Doc, Exporter


All models are available in [Google Drive](https://drive.google.com/drive/folders/1pBsG-SCTatv-95SnEuxmnvvlRx208VKj?usp=sharing) and [Baidu Pan](https://pan.baidu.com/s/1puPSxQqgBFOVpW4W7AolkA) (code: gym7).


## PyTorch Example

1. Install dependencies:
```sh
pip install -r requirements_inference.txt
```

2. Load the model:

```python
import torch
from model import MattingNetwork

model = MattingNetwork('mobilenetv3').eval().cuda() # or "resnet50"
model.load_state_dict(torch.load('rvm_mobilenetv3.pth'))
```

3. To convert videos, we provide a simple conversion API:

```python
from inference import convert_video

convert_video(
model, # The model, can be on any device (cpu or cuda).
input_source='input.mp4', # A video file or an image sequence directory.
output_type='video', # Choose "video" or "png_sequence"
output_composition='com.mp4', # File path if video; directory path if png sequence.
output_alpha="pha.mp4", # [Optional] Output the raw alpha prediction.
output_foreground="fgr.mp4", # [Optional] Output the raw foreground prediction.
output_video_mbps=4, # Output video mbps. Not needed for png sequence.
downsample_ratio=None, # A hyperparameter to adjust or use None for auto.
seq_chunk=12, # Process n frames at once for better parallelism.
)
```

4. Or write your own inference code:
```python
from torch.utils.data import DataLoader
from torchvision.transforms import ToTensor
from inference_utils import VideoReader, VideoWriter

reader = VideoReader('input.mp4', transform=ToTensor())
writer = VideoWriter('output.mp4', frame_rate=30)

bgr = torch.tensor([.47, 1, .6]).view(3, 1, 1).cuda() # Green background.
rec = [None] * 4 # Initial recurrent states.
downsample_ratio = 0.25 # Adjust based on your video.

with torch.no_grad():
for src in DataLoader(reader): # RGB tensor normalized to 0 ~ 1.
fgr, pha, *rec = model(src.cuda(), *rec, downsample_ratio) # Cycle the recurrent states.
com = fgr * pha + bgr * (1 - pha) # Composite to green background.
writer.write(com) # Write frame.
```

5. The models and converter API are also available through TorchHub.

```python
# Load the model.
model = torch.hub.load("PeterL1n/RobustVideoMatting", "mobilenetv3") # or "resnet50"

# Converter API.
convert_video = torch.hub.load("PeterL1n/RobustVideoMatting", "converter")
```

Please see [inference documentation](documentation/inference.md) for details on `downsample_ratio` hyperparameter, more converter arguments, and more advanced usage.


## Training and Evaluation

Please refer to the [training documentation](documentation/training.md) to train and evaluate your own model.


## Speed

Speed is measured with `inference_speed_test.py` for reference.

| GPU | dType | HD (1920x1080) | 4K (3840x2160) |
| -------------- | ----- | -------------- |----------------|
| RTX 3090 | FP16 | 172 FPS | 154 FPS |
| RTX 2060 Super | FP16 | 134 FPS | 108 FPS |
| GTX 1080 Ti | FP32 | 104 FPS | 74 FPS |

* Note 1: HD uses `downsample_ratio=0.25`, 4K uses `downsample_ratio=0.125`. All tests use batch size 1 and frame chunk 1.
* Note 2: GPUs before Turing architecture does not support FP16 inference, so GTX 1080 Ti uses FP32.
* Note 3: We only measure tensor throughput. The provided video conversion script in this repo is expected to be much slower, because it does not utilize hardware video encoding/decoding and does not have the tensor transfer done on parallel threads. If you are interested in implementing hardware video encoding/decoding in Python, please refer to [PyNvCodec](https://github.com/NVIDIA/VideoProcessingFramework).


## Project Members
* [Shanchuan Lin](https://www.linkedin.com/in/shanchuanlin/)
* [Linjie Yang](https://sites.google.com/site/linjieyang89/)
* [Imran Saleemi](https://www.linkedin.com/in/imran-saleemi/)
* [Soumyadip Sengupta](https://homes.cs.washington.edu/~soumya91/)


## Third-Party Projects

* [NCNN C++ Android](https://github.com/FeiGeChuanShu/ncnn_Android_RobustVideoMatting) ([@FeiGeChuanShu](https://github.com/FeiGeChuanShu))
* [lite.ai.toolkit](https://github.com/DefTruth/RobustVideoMatting.lite.ai.toolkit) ([@DefTruth](https://github.com/DefTruth))
* [Gradio Web Demo](https://huggingface.co/spaces/akhaliq/Robust-Video-Matting) ([@AK391](https://github.com/AK391))
* [Unity Engine demo with NatML](https://hub.natml.ai/@natsuite/robust-video-matting) ([@natsuite](https://github.com/natsuite))
* [MNN C++ Demo](https://github.com/DefTruth/lite.ai.toolkit/blob/main/lite/mnn/cv/mnn_rvm.cpp) ([@DefTruth](https://github.com/DefTruth))
* [TNN C++ Demo](https://github.com/DefTruth/lite.ai.toolkit/blob/main/lite/tnn/cv/tnn_rvm.cpp) ([@DefTruth](https://github.com/DefTruth))