Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/PiePline/pietoolbelt

Toolbelt for PiePline training pipeline
https://github.com/PiePline/pietoolbelt

computer-vision dataset deep-learning loss-functions metrics neural-network

Last synced: 3 months ago
JSON representation

Toolbelt for PiePline training pipeline

Awesome Lists containing this project

README

        

# PiePline toolbelt

# Installation:
[![PyPI version](https://badge.fury.io/py/pietoolbelt.svg)](https://badge.fury.io/py/pietoolbelt)
[![PyPI Downloads/Month](https://pepy.tech/badge/pietoolbelt/month)](https://pepy.tech/project/pietoolbelt)
[![PyPI Downloads](https://pepy.tech/badge/pietoolbelt)](https://pepy.tech/project/pietoolbelt)

`pip install pietoolbelt`

##### Install latest version before it's published on PyPi
`pip install -U git+https://github.com/PiePline/pietoolbelt`

# Functional
* `augmentations`
* `augmentations.detection` - predefined augmentations for detection task
* `augmentations.segmentation` - predefined augmentations for segmentation task
* `datasets`
* `datasets.stratification` - stratification by histogram
* `datasets.utils` - set of datasets constructors that
* `losses`
* `losses.common` - losses utils
* `losses.regression` - regression losses
* `losses.segmentation` - losses for single and multi-class segmentation
* `losses.detection` - losses for detection task
* `metrics` -
* `metrics.common` - common utils for metrics
* `cpu` - metrics, that calculates by `numpy`
* `metrics.cpu.classification` - classification metrics
* `metrics.cpu.detection` - detection metrics
* `metrics.cpu.regression` - regression metrics
* `metrics.cpu.segmentation` - segmentation metrics
* `torch` - metrics, that calculates by `torch`
* `metrics.torch.classification` - classification metrics
* `metrics.torch.detection` - detection metrics
* `metrics.torch.regression` - regression metrics
* `metrics.torch.segmentation` - segmentation metrics
* `models` - models zoo and constructors
* `decoders.unet` - UNet decoder, that automatically constructs by encoder
* `encoders.common` - basic interfaces for encoders
* `encoders.inception` - InceptionV3 encoder
* `encoders.mobile_net` - MobileNetV2 encoder
* `encoders.resnet` - ResNet encoders
* `albunet` - albunet model
* `utils` - models utils
* `weights_storage` - pretrained weights storage
* `steps` - some training process steps
* `regression.train` - train step for regression task
* `regression.bagging` - bagging step for regression task
* `segmentation.bagging` - bagging step for segmentation task
* `segmentation.inference` - inference for segmentation model
* `segmentation.predict` - predict step for segmentation task
* `stratification` - dataset stratification class
* `img_matcher` - image comparison and matching tool based on descriptors
* `mask_composer` - mask composer tools that can effectively combine masks for regular, instance or multiclass segmentation
* `train_config` - some predefined train configs for [PiePline](https://github.com/PiePline/piepline)
* `tta` - test time augmentations
* `utils` - some utils
* `viz` - image visualisation tools