Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/PistonY/ResidualAttentionNetwork

A Gluon implement of Residual Attention Network. Best acc on cifar10-97.78%.
https://github.com/PistonY/ResidualAttentionNetwork

cifar10 deep-learning gluon gluon-cv mxnet residual-attention-network sota

Last synced: 2 months ago
JSON representation

A Gluon implement of Residual Attention Network. Best acc on cifar10-97.78%.

Awesome Lists containing this project

README

        

# Residual Attention Network
[![GitHub](https://img.shields.io/github/license/PistonY/ResidualAttentionNetwork.svg)](./LICENSE)
![Status](https://img.shields.io/badge/status-%E8%90%8C-orange.svg)
[![996.icu](https://img.shields.io/badge/link-996.icu-red.svg)](https://996.icu)
![ToDo](http://progressed.io/bar/100?title=ToDo)

A Gluon implement of Residual Attention Network

This code is refered to this project

https://github.com/tengshaofeng/ResidualAttentionNetwork-pytorch
## Cifar-10 Kaggle
![4](kaggle/0.9778.png)

## [GluonCV](http://gluon-cv.mxnet.io)
Project site: https://github.com/dmlc/gluon-cv

I have contribute this project to GluonCV.Now you can easily use pre-trained model in few days.

Usage:
```python
from gluoncv.model_zoo.residual_attentionnet import *
```
Include which you can use:
```python
__all__ = ['ResidualAttentionModel', 'cifar_ResidualAttentionModel',
'residualattentionnet56', 'cifar_residualattentionnet56',
'residualattentionnet92', 'cifar_residualattentionnet92',
'residualattentionnet128', 'cifar_residualattentionnet452',
'residualattentionnet164', 'residualattentionnet200',
'residualattentionnet236', 'residualattentionnet452']
```
## Prerequisites

Python3.6, Numpy, mxnet
- I use maxnet-cu90 --pre but if not is just ok
- If you want to train you need a recent NVIDIA GPU

## Results
- [x] cifar-10: Acc-95.41(**Top-1 err 4.59**) with Attention-92(higher than paper top-1 err 4.99)
- [x] cifar-10: Acc-95.68(**Top-1 err 4.32**) with Attention-92(use MSRAPrelu init)
- [x] cifar-10: Acc-97.14(**Top-1 err 2.86**) with Attention-92, using [gluoncv-tricks](https://arxiv.org/pdf/1812.01187.pdf).
- BS 256,
- +mixup,
- +LR warmup,
- +No bias decay.
- +Cosine decay.
- +Cutout
- [x] cifar-10: Acc-97.57(**Top-1 err 2.43**) with Attention-452, using [gluoncv-tricks](https://arxiv.org/pdf/1812.01187.pdf).
- BS 128,
- +mixup,
- +LR warmup,
- +No bias decay.
- +Cosine decay.
- +Cutout
- [x] Network scale control: I add 'p,t,r,m' to control network scale.(Gluon-CV)
- I add 'p,t,r,m.' control which origin paper proposed.Now you can use Attentnon 56/92/128/164/200/236/452 in Gluon-cv.But I
won't update to this project.Because I can't train them and if I add, the paprm I have trained won't use any more.
- [x] ImageNet: Attention56 achieves (21.03 5.47) top1/top5 error on ImageNet.Better than paper.(21.76 5.9).(Gluon-cv)

## How to train & test
For training cifar10, just run train_cifar.py

For only testing cifar10, you can simply run below script.
```python
import mxnet as mx
from mxnet import gluon, image
from train_cifar import test
from model.residual_attention_network import ResidualAttentionModel_92_32input_update

def trans_test(data, label):
im = data.astype(np.float32) / 255.
auglist = image.CreateAugmenter(data_shape=(3, 32, 32),
mean=mx.nd.array([0.485, 0.456, 0.406]),
std=mx.nd.array([0.229, 0.224, 0.225]))
for aug in auglist:
im = aug(im)

im = nd.transpose(im, (2, 0, 1))
return im, label

ctx = mx.gpu()
val_data = gluon.data.DataLoader(
gluon.data.vision.CIFAR10(train=False, transform=trans_test),
batch_size=64)

net = ResidualAttentionModel_92_32input_update()
net.hybridize()
net.load_parameters('cifar_param/test_iter225999_0.95410.param')
test(net, ctx, val_data, 0)
```

## Paper referenced
Residual Attention Network for Image Classification (CVPR-2017 Spotlight) By Fei Wang, Mengqing Jiang, Chen Qian, Shuo Yang, Chen Li, Honggang Zhang, Xiaogang Wang, Xiaoou Tang(https://arxiv.org/pdf/1704.06904.pdf)

![1](imgs/Figure1.png)
**Left**: an example shows the interaction between features and attention masks. **Right**: example images illustrating that different features have different corresponding attention masks in our network. The sky mask diminishes low-level background blue color features. The balloon instance mask highlights high-level balloon bottom part features.

![2](imgs/Figure2.png)
Attention Network architecture.

![3](imgs/Figure3.png)

The Attention-56 network outperforms ResNet-152 by a large margin with a 0.4% reduction on top-1 error and a 0.26% reduction on top-5 error. More importantly **Attention-56 network achieves better performance with only 52% parameters and 56% FLOPs compared with ResNet-152**, which suggests that the proposed attention mechanism can significantly improve network performance while reducing the model complexity.