Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/PistonY/torch-toolbox

🛠 Toolbox to extend PyTorch functionalities
https://github.com/PistonY/torch-toolbox

arcloss autoaugment cosinewarmuplr cosloss cutout cv2 flops initializers l2softmax labelsmoothing lmdb lmdb-dataset lookahead metrics mixup pytorch swish switchnorm teansform toolbox

Last synced: 2 months ago
JSON representation

🛠 Toolbox to extend PyTorch functionalities

Awesome Lists containing this project

README

        

# Torch Toolbox
![](https://github.com/PistonY/torch-toolbox/workflows/Torch-Toolbox-CI/badge.svg)

Stable Version: v0.1.5 (recommended)

Automatic upload to PyPI is finished.

This project aims to provide the most frequently used tools to help you write more concise and readable PyTorch code.

Pull requests and issues are highly encouraged. Please reach out!

- [Pytorch-Toolbox](#pytorch-toolbox)
* [Installing](#installing)
* [Todo](#todo)
* [Usage](#usage)
+ [Tools](#tools)
- [0. Now CV2 transforms have been released.](#0-now-cv2-transforms-have-been-released)
- [1. Show your model parameters and FLOPs.](#1-show-your-model-parameters-and-flops)
- [2. Metric collection](#2-metric-collection)
- [3. Model Initializer](#3-model-initializer)
- [4. AdaptiveSequential](#4-adaptivesequential)
- [5. Make and Use LMDB dataset.](#5-make-and-use-lmdb-dataset)
- [6. Non-Lable dataset](#6-non-lable-dataset)
- [7. Activation Layer](#7-activation-layer)
- [8. FeatureVerification Metric](#8-featureverification-metric)
+ [Fashion work](#fashion-work)
- [1. LabelSmoothingLoss](#1-labelsmoothingloss)
- [2. CosineWarmupLr](#2-cosinewarmuplr)
- [3. SwitchNorm2d/3d](#3-switchnorm2d-3d)
- [4. Swish activation](#4-swish-activation)
- [5. Lookahead optimizer](#5-lookahead-optimizer)
- [5. Mixup training](#5-mixup-training)
- [6. Cutout](#6-cutout)
- [7. No decay bias](#7-no-decay-bias)
- [8. Margin based classification loss](#8-margin-based-classification-loss)
- [9. DCNv2](#9-dcnv2)
- [10. FocalLoss](#10-focalloss)
- [11. SigmoidCrossEntropy](#11-sigmoidcrossentropy)
- [12. CircleLoss](#12-circleloss)
- [13. EvoNrom](#13-evonrom)
- [14. Activation Layer](#14-activation-layer)
- [15. Zero LastGamma Init](#15-zero-lastgamma-init)
- [16. SGD_GC](#16-sgc_gc)
- [17. Autoaugment](#17-autoaugment)
* [Contribution](#contribution)

## Installing
An easy way to install Torch Toolbox is via pip:
```shell
pip install torchtoolbox
```
If you want to install the nightly version:
```shell
pip install -U git+https://github.com/PistonY/torch-toolbox.git@master
```
## Todo
- [x] cv2 transforms.
- [ ] Integrate with [albumentations](https://github.com/albumentations-team/albumentations)
- [ ] Prepare tensorboard support with metric collection.

## Usage
Toolbox have two main parts:
1. Auxiliary tools to make using Pytorch easier.
2. Some fashion work which don't exist in Pytorch core.

More examples could be found at [ModelZoo.pytorch](https://github.com/PistonY/ModelZoo.pytorch)

### Tools
#### 0. Now CV2 transforms have been released.
Support as list:(need test)
```python
__all__ = ["Compose", "ToTensor", "ToCVImage", "Normalize", "Resize", "Scale", "CenterCrop", "Pad",
"Lambda", "RandomApply", "RandomChoice", "RandomOrder", "RandomCrop", "RandomHorizontalFlip",
"RandomVerticalFlip", "RandomResizedCrop", "RandomSizedCrop", "FiveCrop", "TenCrop", "LinearTransformation",
"ColorJitter", "RandomRotation", "RandomAffine", "Grayscale", "RandomGrayscale",
"RandomPerspective", "RandomErasing", "RandomGaussianNoise", "RandomPoissonNoise", "RandomSPNoise",
"RandomTransforms", "Cutout"]
```
Part of this code refers to [opencv_transforms_torchvision](https://github.com/YU-Zhiyang/opencv_transforms_torchvision)
- [albumentations](https://github.com/albumentations-team/albumentations) is also recommended as cv2 backend transform tools.

#### 1. Show your model parameters and FLOPs.
```python
import torch
from torchtoolbox.tools import summary
from torchvision.models.mobilenet import mobilenet_v2
model = mobilenet_v2()
summary(model, torch.rand((1, 3, 224, 224)))
```
Here are some short outputs.
```
Layer (type) Output Shape Params FLOPs(M+A) #
================================================================================
Conv2d-1 [1, 64, 112, 112] 9408 235225088
BatchNorm2d-2 [1, 64, 112, 112] 256 1605632
ReLU-3 [1, 64, 112, 112] 0 0
MaxPool2d-4 [1, 64, 56, 56] 0 0
... ... ... ...
Linear-158 [1, 1000] 1281000 2560000
MobileNetV2-159 [1, 1000] 0 0
================================================================================
Total parameters: 3,538,984 3.5M
Trainable parameters: 3,504,872
Non-trainable parameters: 34,112
Total flops(M) : 305,252,872 305.3M
Total flops(M+A): 610,505,744 610.5M
--------------------------------------------------------------------------------
Parameters size (MB): 13.50
```

#### 2. Metric collection
When we train a model we usually need to calculate some metrics like accuracy(top1-acc), loss etc.
Now toolbox support the following:
1. Accuracy: top-1 acc.
2. TopKAccuracy: topK-acc.
3. NumericalCost: This is a number metric collection which support `mean`, `max`, `min` calculate type.
4. FeatureVerification.
- This is widely used in margin based algorithm.

```python
from torchtoolbox import metric

# define first
top1_acc = metric.Accuracy(name='Top1 Accuracy')
top5_acc = metric.TopKAccuracy(top=5, name='Top5 Accuracy')
loss_record = metric.NumericalCost(name='Loss')

# reset before using
top1_acc.reset()
top5_acc.reset()
loss_record.reset()

...
model.eval()
for data, labels in val_data:
data = data.to(device, non_blocking=True)
labels = labels.to(device, non_blocking=True)

outputs = model(data)
losses = Loss(outputs, labels)
# update/record
top1_acc.update(outputs, labels)
top5_acc.update(outputs, labels)
loss_record.update(losses)
test_msg = 'Test Epoch {}: {}:{:.5}, {}:{:.5}, {}:{:.5}\n'.format(
epoch, top1_acc.name, top1_acc.get(), top5_acc.name, top5_acc.get(),
loss_record.name, loss_record.get())

print(test_msg)
```
Then you may get outputs like this
```
Test Epoch 101: Top1 Accuracy:0.7332, Top5 Accuracy:0.91514, Loss:1.0605
```

#### 3. Model Initializer
Now ToolBox support `XavierInitializer` and `KaimingInitializer`.
```python
from torchtoolbox.nn.init import KaimingInitializer

model = XXX
initializer = KaimingInitializer()
model.apply(initializer)

```
#### 4. AdaptiveSequential
Make Pytorch `nn.Sequential` could handle multi input/output layer.
```python
from torch import nn
from torchtoolbox.nn import AdaptiveSequential
import torch

class n_to_n(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 3, 1, 1, bias=False)
self.conv2 = nn.Conv2d(3, 3, 1, 1, bias=False)

def forward(self, x1, x2):
y1 = self.conv1(x1)
y2 = self.conv2(x2)
return y1, y2

class n_to_one(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 3, 1, 1, bias=False)
self.conv2 = nn.Conv2d(3, 3, 1, 1, bias=False)

def forward(self, x1, x2):
y1 = self.conv1(x1)
y2 = self.conv2(x2)
return y1 + y2

class one_to_n(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 3, 1, 1, bias=False)
self.conv2 = nn.Conv2d(3, 3, 1, 1, bias=False)

def forward(self, x):
y1 = self.conv1(x)
y2 = self.conv2(x)
return y1, y2

seq = AdaptiveSequential(one_to_n(), n_to_n(), n_to_one()).cuda()
td = torch.rand(1, 3, 32, 32).cuda()

out = seq(td)
print(out.size())

# output
# torch.Size([1, 3, 32, 32])
```
#### 5. Make and Use LMDB dataset.
If you meet IO speed limit, you may think about [LMDB](https://lmdb.readthedocs.io/en/release/) format dataset.
LMDB is a tiny database with some excellent properties.

Easy to generate a LMDB format dataset.
```python
from torchtoolbox.tools.convert_lmdb import generate_lmdb_dataset, raw_reader
from torchvision.datasets import ImageFolder

dt = ImageFolder(..., loader=raw_reader)
save_dir = XXX
dataset_name = YYY
generate_lmdb_dataset(dt, save_dir=save_dir, name=dataset_name)

```

Then if you use `ImageFolder` like dataset you can easily use `ImageLMDB` to load you dataset.
```python
from torchtoolbox.data import ImageLMDB

dt = ImageLMDB(db_path=save_dir, db_name=dataset_name, ...)
```

#### 6. Non-Lable dataset
This dataset only return images.

More details please refers to [codes](https://github.com/PistonY/torch-toolbox/blob/4838af996b972cd666fadb9fb6bd6dab2103ccad/torchtoolbox/data/datasets.py#L13)

#### 7. Activation Layer
A `Activation` Layer is provided to select a activation by string.
```python
from torchtoolbox.nn import Activation

relu = Activation('relu', auto_optimize=True)

```

#### 8. FeatureVerification Metric
A `FeatureVerification Metric` used to test feature based accuracy.
More details refers to code.

### Fashion work

#### 1. LabelSmoothingLoss

```python
from torchtoolbox.nn import LabelSmoothingLoss
# The num classes of your task should be defined.
classes = 10
# Loss
Loss = LabelSmoothingLoss(classes, smoothing=0.1)

...
for i, (data, labels) in enumerate(train_data):
data = data.to(device, non_blocking=True)
labels = labels.to(device, non_blocking=True)

optimizer.zero_grad()
outputs = model(data)
# just use as usual.
loss = Loss(outputs, labels)
loss.backward()
optimizer.step()
```

#### 2. CosineWarmupLr
Cosine lr scheduler with warm-up epochs.It's helpful to improve acc for classification models.
```python
from torchtoolbox.optimizer import CosineWarmupLr

optimizer = optim.SGD(...)
# define scheduler
# `batches_pre_epoch` means how many batches(times update/step the model) within one epoch.
# `warmup_epochs` means increase lr how many epochs to `base_lr`.
# you can find more details in file.
lr_scheduler = CosineWarmupLr(optimizer, batches_pre_epoch, epochs,
base_lr=lr, warmup_epochs=warmup_epochs)
...
for i, (data, labels) in enumerate(train_data):
...
optimizer.step()
# remember to step/update status here.
lr_scheduler.step()
...
```

#### 3. SwitchNorm2d/3d
```python
from torchtoolbox.nn import SwitchNorm2d, SwitchNorm3d
```
Just use it like Batchnorm2d/3d.
More details please refer to origin paper
[Differentiable Learning-to-Normalize via Switchable Normalization](https://arxiv.org/pdf/1806.10779.pdf)
[OpenSourse](https://github.com/switchablenorms/Switchable-Normalization)

#### 4. Swish activation
```python
from torchtoolbox.nn import Swish
```
Just use it like Relu.
More details please refer to origin paper
[SEARCHING FOR ACTIVATION FUNCTIONS](https://arxiv.org/pdf/1710.05941.pdf)

#### 5. Lookahead optimizer
A wrapper optimizer seems better than Adam.
[Lookahead Optimizer: k steps forward, 1 step back](https://arxiv.org/abs/1907.08610)
```python
from torchtoolbox.optimizer import Lookahead
from torch import optim

optimizer = optim.Adam(...)
optimizer = Lookahead(optimizer)
```

#### 5. Mixup training
Mixup method to train a classification model.
[mixup: BEYOND EMPIRICAL RISK MINIMIZATION](https://arxiv.org/pdf/1710.09412.pdf)

```python
from torchtoolbox.tools import mixup_data, mixup_criterion

# set beta distributed parm, 0.2 is recommend.
alpha = 0.2
for i, (data, labels) in enumerate(train_data):
data = data.to(device, non_blocking=True)
labels = labels.to(device, non_blocking=True)

data, labels_a, labels_b, lam = mixup_data(data, labels, alpha)
optimizer.zero_grad()
outputs = model(data)
loss = mixup_criterion(Loss, outputs, labels_a, labels_b, lam)

loss.backward()
optimizer.update()
```

#### 6. Cutout
A image transform method.
[Improved Regularization of Convolutional Neural Networks with Cutout](https://arxiv.org/pdf/1708.04552.pdf)
```python
from torchvision import transforms
from torchtoolbox.transform import Cutout

_train_transform = transforms.Compose([
transforms.RandomResizedCrop(224),
Cutout(),
transforms.RandomHorizontalFlip(),
transforms.ColorJitter(0.4, 0.4, 0.4),
transforms.ToTensor(),
normalize,
])
```

#### 7. No decay bias
If you train a model with big batch size, eg. 64k, you may need this,
[Highly Scalable Deep Learning Training System with Mixed-Precision: Training ImageNet in Four Minutes](https://arxiv.org/pdf/1807.11205.pdf)

```python
from torchtoolbox.tools import no_decay_bias
from torch import optim

model = XXX
parameters = no_decay_bias(model)
optimizer = optim.SGD(parameters, ...)

```
#### 8. Margin based classification loss
Now support:
1. ArcLoss
2. CosLoss
3. L2Softmax

```python
from torchtoolbox.nn.loss import ArcLoss, CosLoss, L2Softmax
```

You could use this like `nn.CrossEntropyLoss`

#### 9. DCNv2
- [Deformable ConvNets v2: More Deformable, Better Results](https://arxiv.org/abs/1811.11168)

#### 10. FocalLoss
- [Focal Loss for Dense Object Detection](https://arxiv.org/abs/1708.02002)

#### 11. SigmoidCrossEntropy

#### 12. CircleLoss
- [Circle Loss: A Unified Perspective of Pair Similarity Optimization](https://arxiv.org/pdf/2002.10857)

#### 13. EvoNrom
- [Evolving Normalization-Activation Layers](https://arxiv.org/pdf/2004.02967)

#### 14. Activation Layer
1. Swish
2. HardSwish
3. HardSigmoid
Usage:
```python
from torchtoolbox.nn import Swish, HardSwish, HardSigmoid

swish = Swish()
hswish = HardSwish()
hsigmoid = HardSigmoid()

```

#### 15. Zero LastGamma Init
```python
from torchtoolbox.nn.init import ZeroLastGamma

model == XXX
init = ZeroLastGamma(block_name='Bottleneck', bn_name='bn3')
model.apply(init)
```

#### 16. SGC_GC
[Gradient Centralization: A New Optimization Technique for Deep Neural Networks](https://arxiv.org/pdf/2004.01461.pdf)

```python
from torchtoolbox.optimizer import SGD_GC

optimizer = SGD_GC(model.parameters())
optimizer.zero_grad()
loss.backward()
optimizer.step()

```

#### 17. Autoaugment
```python
# for ImageNet
from torchtoolbox.transform import ImageNetPolicy, Compose, \
RandomResizedCrop, RandomHorizontalFlip, ToTensor

transforms = Compose([RandomResizedCrop(224),
RandomHorizontalFlip(),
ImageNetPolicy,
ToTensor()])
```

## Contribution

Welcome pull requests and issues!!!