https://github.com/Project-Platypus/Platypus
A Free and Open Source Python Library for Multiobjective Optimization
https://github.com/Project-Platypus/Platypus
algorithm evolutionary genetic multiobjective optimization python
Last synced: about 3 hours ago
JSON representation
A Free and Open Source Python Library for Multiobjective Optimization
- Host: GitHub
- URL: https://github.com/Project-Platypus/Platypus
- Owner: Project-Platypus
- License: gpl-3.0
- Created: 2015-10-09T19:19:17.000Z (about 10 years ago)
- Default Branch: master
- Last Pushed: 2025-10-25T02:41:11.000Z (23 days ago)
- Last Synced: 2025-11-10T05:19:23.566Z (7 days ago)
- Topics: algorithm, evolutionary, genetic, multiobjective, optimization, python
- Language: Python
- Size: 1.21 MB
- Stars: 629
- Watchers: 18
- Forks: 159
- Open Issues: 2
-
Metadata Files:
- Readme: README.md
- Funding: .github/FUNDING.yml
- License: COPYING
Awesome Lists containing this project
- awesome-python-data-science - Platypus - A Free and Open Source Python Library for Multiobjective Optimization. (Optimization / NLP)
- awesome-python-data-science - Platypus - A Free and Open Source Python Library for Multiobjective Optimization. (Optimization / Others)
README
# Platypus
[](https://pypi.org/project/Platypus-Opt/)


[](https://github.com/Project-Platypus/Platypus/actions/workflows/test-and-publish.yml) [](http://platypus.readthedocs.org/en/latest/?badge=latest)

[](https://pypi.org/project/Platypus-Opt/)



### What is Platypus?
Platypus is a framework for evolutionary computing in Python with a focus on
multiobjective evolutionary algorithms (MOEAs). It differs from existing
optimization libraries, including PyGMO, Inspyred, DEAP, and Scipy, by providing
optimization algorithms and analysis tools for multiobjective optimization.
It currently supports NSGA-II, NSGA-III, MOEA/D, IBEA, Epsilon-MOEA, SPEA2, GDE3,
OMOPSO, SMPSO, and Epsilon-NSGA-II. For more information, see our
[examples](examples/)
and [online documentation](http://platypus.readthedocs.org/en/latest/index.html).
### Example
For example, optimizing a simple biobjective problem with a single real-valued
decision variables is accomplished in Platypus with:
```python
from platypus import NSGAII, Problem, Real
def schaffer(x):
return [x[0]**2, (x[0]-2)**2]
problem = Problem(1, 2)
problem.types[:] = Real(-10, 10)
problem.function = schaffer
algorithm = NSGAII(problem)
algorithm.run(10000)
```
### Installation
To install the latest Platypus release, run the following command:
```
pip install platypus-opt
```
To install the latest development version of Platypus, run the following commands:
```
pip install -U build setuptools
git clone https://github.com/Project-Platypus/Platypus.git
cd Platypus
python -m build
python -m pip install --editable .
```
#### Anaconda
Platypus is also available via conda-forge.
```
conda config --add channels conda-forge
conda install platypus-opt
```
For more information, see the [feedstock](https://github.com/conda-forge/platypus-opt-feedstock).
### Citation
If you use this software in your work, please cite it as follows (APA style):
> Hadka, D. (2024). Platypus: A Framework for Evolutionary Computing in Python (Version 1.4.1) [Computer software]. Retrieved from https://github.com/Project-Platypus/Platypus.
### License
Platypus is released under the GNU General Public License.