An open API service indexing awesome lists of open source software.

https://github.com/Puumanamana/CoCoNet

Tool for unsupervised contig binning from viral metagenomes
https://github.com/Puumanamana/CoCoNet

Last synced: about 2 months ago
JSON representation

Tool for unsupervised contig binning from viral metagenomes

Awesome Lists containing this project

README

        

CoCoNet documentation
=====================

.. image:: https://travis-ci.org/Puumanamana/CoCoNet.svg?branch=master
:target: https://travis-ci.org/Puumanamana/CoCoNet
.. image:: https://codecov.io/gh/Puumanamana/CoCoNet/branch/master/graph/badge.svg
:target: https://codecov.io/gh/Puumanamana/CoCoNet
.. image:: https://readthedocs.org/projects/coconet/badge/?version=latest
:target: https://coconet.readthedocs.io/
.. image:: https://api.codacy.com/project/badge/Grade/552eeafebb52496ebb409f421bd4edb6
:target: https://www.codacy.com/manual/Puumanamana/CoCoNet?utm_source=github.com&utm_medium=referral&utm_content=Puumanamana/CoCoNet&utm_campaign=Badge_Grade
.. image:: https://anaconda.org/bioconda/coconet-binning/badges/version.svg
:target: https://anaconda.org/bioconda/coconet-binning

Citation
---------------------------
Cédric G Arisdakessian, Olivia Nigro, Grieg Steward, Guylaine Poisson, Mahdi Belcaid, CoCoNet: An Efficient Deep Learning Tool for Viral Metagenome Binning, Bioinformatics, 2021;, btab213, https://doi.org/10.1093/bioinformatics/btab213

Description
-----------

CoCoNet (Composition and Coverage Network) is a binning method for viral metagenomes. It leverages deep learning to abstract the modeling of the k-mer composition and the coverage for binning contigs assembled form viral metagenomic data. Specifically, our method uses a neural network to learn from the metagenomic data a flexible function for predicting the probability that any pair of contigs originated from the same genome. These probabilities are subsequently combined to infer bins, or clusters representing the species present in the sequenced samples. Our approach was specifically designed for diverse viral metagenomes, such as those found in environmental samples (e.g., oceans, soil, etc.).

Install
-------

Install latest PyPi release (recommended)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.. code-block:: bash

pip3 install --user numpy
pip3 install --user coconet-binning

For more installation options, see the `documentation `_

Basic usage
-----------

CoCoNet is available as the command line program. For a list of all the options, open a terminal and run:

.. code-block:: bash

coconet run -h

For more details, please see the documentation on `ReadTheDocs `_

Checking the installation
-------------------------

A test dataset is provided in this repository in tests/sim_data. To quickly verify the installation worked, you can simply download the repository and run the test command as follows:

.. code-block:: bash

git clone https://github.com/Puumanamana/CoCoNet
cd CoCoNet
make test

Contribute
----------

- Issue Tracker: `github `__
- Source Code: `github `__