Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/QwenLM/Qwen-Audio
The official repo of Qwen-Audio (通义千问-Audio) chat & pretrained large audio language model proposed by Alibaba Cloud.
https://github.com/QwenLM/Qwen-Audio
Last synced: 2 months ago
JSON representation
The official repo of Qwen-Audio (通义千问-Audio) chat & pretrained large audio language model proposed by Alibaba Cloud.
- Host: GitHub
- URL: https://github.com/QwenLM/Qwen-Audio
- Owner: QwenLM
- License: other
- Created: 2023-11-07T06:31:39.000Z (about 1 year ago)
- Default Branch: main
- Last Pushed: 2024-07-05T09:17:49.000Z (7 months ago)
- Last Synced: 2024-11-11T18:02:59.665Z (2 months ago)
- Language: Python
- Size: 24.6 MB
- Stars: 1,480
- Watchers: 25
- Forks: 106
- Open Issues: 57
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- StarryDivineSky - QwenLM/Qwen-Audio - Audio接受各种音频(人类语音、自然声音、音乐和歌曲)和文本作为输入,输出文本。贡献包括:`基础音频模型`:基础的多任务音频语言模型,支持各种任务、语言和音频类型,作为通用音频理解模型。在Qwen-Audio的基础上,我们通过指令微调开发Qwen-Audio-Chat,实现多轮对话,支持多样化的音频场景。`适用于所有类型音频的多任务学习框架`:为了扩大音频语言预训练的规模,我们通过提出一个多任务训练框架,实现知识共享和避免一对多干扰,解决了与不同数据集相关的文本标签变化的挑战。我们的模型包含 30 多个任务,大量实验表明该模型具有强大的性能。`强大的性能`:在各种基准测试任务中都取得了令人印象深刻的性能,而无需任何特定任务的微调,超过了同类产品。在 Aishell1、cochlscene、ClothoAQA 和 VocalSound 的测试集上取得先进的结果。`从音频和文本输入灵活多运行聊天`:支持多音频分析、声音理解和推理、音乐欣赏和工具使用。 (A01_文本生成_文本对话 / 大语言对话模型及数据)
README
中文  |   English  
Qwen-Audio 🤖 | 🤗  | Qwen-Audio-Chat 🤖 | 🤗  |    Demo 🤖 | 🤗 
  Homepage  |   Paper   |    WeChat   |   Discord  
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/qwen-audio-advancing-universal-audio/speech-recognition-on-aishell-1)](https://paperswithcode.com/sota/speech-recognition-on-aishell-1?p=qwen-audio-advancing-universal-audio)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/qwen-audio-advancing-universal-audio/speech-recognition-on-aishell-2-test-android-1)](https://paperswithcode.com/sota/speech-recognition-on-aishell-2-test-android-1?p=qwen-audio-advancing-universal-audio)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/qwen-audio-advancing-universal-audio/speech-recognition-on-aishell-2-test-ios)](https://paperswithcode.com/sota/speech-recognition-on-aishell-2-test-ios?p=qwen-audio-advancing-universal-audio)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/qwen-audio-advancing-universal-audio/speech-recognition-on-aishell-2-test-mic-1)](https://paperswithcode.com/sota/speech-recognition-on-aishell-2-test-mic-1?p=qwen-audio-advancing-universal-audio)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/qwen-audio-advancing-universal-audio/acoustic-scene-classification-on-cochlscene)](https://paperswithcode.com/sota/acoustic-scene-classification-on-cochlscene?p=qwen-audio-advancing-universal-audio)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/qwen-audio-advancing-universal-audio/acoustic-scene-classification-on-tut-acoustic)](https://paperswithcode.com/sota/acoustic-scene-classification-on-tut-acoustic?p=qwen-audio-advancing-universal-audio)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/qwen-audio-advancing-universal-audio/audio-classification-on-vocalsound)](https://paperswithcode.com/sota/audio-classification-on-vocalsound?p=qwen-audio-advancing-universal-audio)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/qwen-audio-advancing-universal-audio/audio-captioning-on-clotho)](https://paperswithcode.com/sota/audio-captioning-on-clotho?p=qwen-audio-advancing-universal-audio)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/qwen-audio-advancing-universal-audio/speech-recognition-on-librispeech-test-clean)](https://paperswithcode.com/sota/speech-recognition-on-librispeech-test-clean?p=qwen-audio-advancing-universal-audio)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/qwen-audio-advancing-universal-audio/emotion-recognition-in-conversation-on-meld)](https://paperswithcode.com/sota/emotion-recognition-in-conversation-on-meld?p=qwen-audio-advancing-universal-audio)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/qwen-audio-advancing-universal-audio/speech-recognition-on-librispeech-test-other)](https://paperswithcode.com/sota/speech-recognition-on-librispeech-test-other?p=qwen-audio-advancing-universal-audio)**Qwen-Audio** (Qwen Large Audio Language Model) is the multimodal version of the large model series, Qwen (abbr. Tongyi Qianwen), proposed by Alibaba Cloud. Qwen-Audio accepts diverse audio (human speech, natural sound, music and song) and text as inputs, outputs text. The contribution of Qwen-Audio include:
- **Fundamental audio models**: Qwen-Audio is a fundamental multi-task audio-language model that supports various tasks, languages, and audio types, serving as a universal audio understanding model. Building upon Qwen-Audio, we develop Qwen-Audio-Chat through instruction fine-tuning, enabling multi-turn dialogues and supporting diverse audio-oriented scenarios.
- **Multi-task learning framework for all types of audios**: To scale up audio-language pre-training, we address the challenge of variation in textual labels associated with different datasets by proposing a multi-task training framework, enabling knowledge sharing and avoiding one-to-many interference. Our model incorporates more than 30 tasks and extensive experiments show the model achieves strong performance.
- **Strong Performance**: Experimental results show that Qwen-Audio achieves impressive performance across diverse benchmark tasks without requiring any task-specific fine-tuning, surpassing its counterparts. Specifically, Qwen-Audio achieves state-of-the-art results on the test set of Aishell1, cochlscene, ClothoAQA, and VocalSound.
- **Flexible multi-run chat from audio and text input**: Qwen-Audio supports multiple-audio analysis, sound understanding and reasoning, music appreciation, and tool usage.
We release two models of the Qwen-Audio series soon:
- Qwen-Audio: The pre-trained multi-task audio understanding model uses Qwen-7B as the initialization of the LLM, and [Whisper-large-v2](https://github.com/openai/whisper) as the initialization of the audio encoder.
- Qwen-Audio-Chat: A multimodal LLM-based AI assistant, which is trained with alignment techniques. Qwen-Audio-Chat supports more flexible interaction, such as multiple audio inputs, multi-round question answering, and creative capabilities.## News and Updates
* 2023.11.30 🔥 We have released the checkpoints of both **Qwen-Audio** and **Qwen-Audio-Chat** on ModelScope and Hugging Face.
* 2023.11.15 🎉 We released a [paper](http://arxiv.org/abs/2311.07919) for details about Qwen-Audio and Qwen-Audio-Chat model, including training details and model performance.
## Evaluation
We evaluated the Qwen-Audio's abilities on 12 standard benchmarks as follows:
The below is the overal performance:
The details of evaluation are as follows:
### Automatic Speech RecognitionDataset
Model
Results (WER)
dev-clean
dev-othoer
test-clean
test-other
Librispeech
SpeechT5
2.1
5.5
2.4
5.8
SpeechNet
-
-
30.7
-
SLM-FT
-
-
2.6
5.0
SALMONN
-
-
2.1
4.9
Qwen-Audio
1.8
4.0
2.0
4.2
Dataset
Model
Results (WER)
dev
test
Aishell1
MMSpeech-base
2.0
2.1
MMSpeech-large
1.6
1.9
Paraformer-large
-
2.0
Qwen-Audio
1.2 (SOTA)
1.3 (SOTA)
Dataset
Model
Results (WER)
Mic
iOS
Android
Aishell2
MMSpeech-base
4.5
3.9
4.0
Paraformer-large
-
2.9
-
Qwen-Audio
3.3
3.1
3.3
### Soeech-to-text Translation
Dataset
Model
Results (BLUE)
en-de
de-en
en-zh
zh-en
es-en
fr-en
it-en
CoVoST2
SALMMON
18.6
-
33.1
-
-
-
-
SpeechLLaMA
-
27.1
-
12.3
27.9
25.2
25.9
BLSP
14.1
-
-
-
-
-
-
Qwen-Audio
25.1
33.9
41.5
15.7
39.7
38.5
36.0
### Automatic Audio Caption
Dataset
Model
Results
CIDER
SPICE
SPIDEr
Clotho
Pengi
0.416
0.126
0.271
Qwen-Audio
0.441
0.136
0.288
### Speech Recognition with Word-level Timestamp
Dataset
Model
AAC (ms)
Industrial Data
Force-aligner
60.3
Paraformer-large-TP
65.3
Qwen-Audio
51.5 (SOTA)
### Automatic Scene Classification
Dataset
Model
ACC
Cochlscene
Cochlscene
0.669
Qwen-Audio
0.795 (SOTA)
TUT2017
Pengi
0.353
Qwen-Audio
0.649
### Speech Emotion Recognition
Dataset
Model
ACC
Meld
WavLM-large
0.542
Qwen-Audio
0.557
### Audio Question & Answer
Dataset
Model
Results
ACC
ACC (binary)
ClothoAQA
ClothoAQA
0.542
0.627
Pengi
-
0.645
Qwen-Audio
0.579
0.749
### Vocal Sound Classification
Dataset
Model
ACC
VocalSound
CLAP
0.4945
Pengi
0.6035
Qwen-Audio
0.9289 (SOTA)
### Music Note Analysis
Dataset
Model
NS. Qualities (MAP)
NS. Instrument (ACC)
NSynth
Pengi
0.3860
0.5007
Qwen-Audio
0.4742
0.7882
We have provided **all** evaluation scripts to reproduce our results. Please refer to [eval_audio/EVALUATION.md](eval_audio/EVALUATION.md) for details.
### Evaluation of Chat
To evaluate the chat abilities of Qwen-Audio-Chat, we provide [TUTORIAL](TUTORIAL.md) and demo for users.## Requirements
* python 3.8 and above
* pytorch 1.12 and above, 2.0 and above are recommended
* CUDA 11.4 and above are recommended (this is for GPU users)
* FFmpeg## Quickstart
Below, we provide simple examples to show how to use Qwen-Audio and Qwen-Audio-Chat with 🤖 ModelScope and 🤗 Transformers.
Before running the code, make sure you have setup the environment and installed the required packages. Make sure you meet the above requirements, and then install the dependent libraries.
```bash
pip install -r requirements.txt
```Now you can start with ModelScope or Transformers. For more usage, please refer to the [tutorial](TUTORIAL.md). Qwen-Audio models currently perform best with audio clips under 30 seconds.
#### 🤗 Transformers
To use Qwen-Audio-Chat for the inference, all you need to do is to input a few lines of codes as demonstrated below. However, **please make sure that you are using the latest code.**
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig
import torch
torch.manual_seed(1234)# Note: The default behavior now has injection attack prevention off.
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-Audio-Chat", trust_remote_code=True)# use bf16
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-Audio-Chat", device_map="auto", trust_remote_code=True, bf16=True).eval()
# use fp16
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-Audio-Chat", device_map="auto", trust_remote_code=True, fp16=True).eval()
# use cpu only
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-Audio-Chat", device_map="cpu", trust_remote_code=True).eval()
# use cuda device
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-Audio-Chat", device_map="cuda", trust_remote_code=True).eval()# Specify hyperparameters for generation (No need to do this if you are using transformers>4.32.0)
# model.generation_config = GenerationConfig.from_pretrained("Qwen/Qwen-Audio-Chat", trust_remote_code=True)# 1st dialogue turn
query = tokenizer.from_list_format([
{'audio': 'assets/audio/1272-128104-0000.flac'}, # Either a local path or an url
{'text': 'what does the person say?'},
])
response, history = model.chat(tokenizer, query=query, history=None)
print(response)
# The person says: "mister quilter is the apostle of the middle classes and we are glad to welcome his gospel".# 2nd dialogue turn
response, history = model.chat(tokenizer, 'Find the start time and end time of the word "middle classes"', history=history)
print(response)
# The word "middle classes" starts at <|2.33|> seconds and ends at <|3.26|> seconds.
```Running Qwen-Audio pretrained base model is also simple.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig
import torch
torch.manual_seed(1234)tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-Audio", trust_remote_code=True)
# use bf16
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-Audio", device_map="auto", trust_remote_code=True, bf16=True).eval()
# use fp16
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-Audio", device_map="auto", trust_remote_code=True, fp16=True).eval()
# use cpu only
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-Audio", device_map="cpu", trust_remote_code=True).eval()
# use cuda device
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-Audio", device_map="cuda", trust_remote_code=True).eval()# Specify hyperparameters for generation (No need to do this if you are using transformers>4.32.0)
# model.generation_config = GenerationConfig.from_pretrained("Qwen/Qwen-Audio", trust_remote_code=True)
audio_url = "assets/audio/1272-128104-0000.flac"
sp_prompt = "<|startoftranscription|><|en|><|transcribe|><|en|><|notimestamps|><|wo_itn|>"
query = f"{audio_url}{sp_prompt}"
audio_info = tokenizer.process_audio(query)
inputs = tokenizer(query, return_tensors='pt', audio_info=audio_info)
inputs = inputs.to(model.device)
pred = model.generate(**inputs, audio_info=audio_info)
response = tokenizer.decode(pred.cpu()[0], skip_special_tokens=False,audio_info=audio_info)
print(response)
# assets/audio/1272-128104-0000.flac<|startoftranscription|><|en|><|transcribe|><|en|><|notimestamps|><|wo_itn|>mister quilting is the apostle of the middle classes and we are glad to welcome his gospel<|endoftext|>
```In the event of a network issue while attempting to download model checkpoints and codes from Hugging Face, an alternative approach is to initially fetch the checkpoint from ModelScope and then load it from the local directory as outlined below:
```python
from modelscope import snapshot_download
from transformers import AutoModelForCausalLM, AutoTokenizer# Downloading model checkpoint to a local dir model_dir
model_id = 'qwen/Qwen-Audio-Chat'
revision = 'master'
model_dir = snapshot_download(model_id, revision=revision)# Loading local checkpoints
# trust_remote_code is still set as True since we still load codes from local dir instead of transformers
tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_dir,
device_map="cuda",
trust_remote_code=True
).eval()
```#### 🤖 ModelScope
ModelScope is an opensource platform for Model-as-a-Service (MaaS), which provides flexible and cost-effective model service to AI developers. Similarly, you can run the models with ModelScope as shown below:
```python
from modelscope import (
snapshot_download, AutoModelForCausalLM, AutoTokenizer, GenerationConfig
)
import torch
model_id = 'qwen/Qwen-Audio-Chat'
revision = 'master'model_dir = snapshot_download(model_id, revision=revision)
torch.manual_seed(1234)tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
if not hasattr(tokenizer, 'model_dir'):
tokenizer.model_dir = model_dir
# use bf16
# model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto", trust_remote_code=True, bf16=True).eval()
# use fp16
# model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto", trust_remote_code=True, fp16=True).eval()
# use CPU
# model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="cpu", trust_remote_code=True).eval()
# use gpu
model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto", trust_remote_code=True).eval()# 1st dialogue turn
query = tokenizer.from_list_format([
{'audio': 'assets/audio/1272-128104-0000.flac'}, # Either a local path or an url
{'text': 'what does the person say?'},
])
response, history = model.chat(tokenizer, query=query, history=None)
print(response)
# The person says: "mister quilter is the apostle of the middle classes and we are glad to welcome his gospel".# 2st dialogue turn
response, history = model.chat(tokenizer, 'Find the start time and end time of the word "middle classes"', history=history)
print(response)
# The word "middle classes" starts at <|2.33|> seconds and ends at <|3.26|> seconds.
```## Demo
### Web UI
We provide code for users to build a web UI demo. Before you start, make sure you install the following packages:
```
pip install -r requirements_web_demo.txt
```Then run the command below and click on the generated link:
```
python web_demo_audio.py
```## FAQ
If you meet problems, please refer to [FAQ](FAQ.md) and the issues first to search a solution before you launch a new issue.
## We Are Hiring
If you are interested in joining us as full-time or intern, please contact us at [email protected].
## License Agreement
Researchers and developers are free to use the codes and model weights of both Qwen-Audio and Qwen-Audio-Chat. We also allow their commercial use. Check our license at [LICENSE](LICENSE) for more details.
## Citation
If you find our paper and code useful in your research, please consider giving a star :star: and citation :pencil: :)
```BibTeX
@article{Qwen-Audio,
title={Qwen-Audio: Advancing Universal Audio Understanding via Unified Large-Scale Audio-Language Models},
author={Chu, Yunfei and Xu, Jin and Zhou, Xiaohuan and Yang, Qian and Zhang, Shiliang and Yan, Zhijie and Zhou, Chang and Zhou, Jingren},
journal={arXiv preprint arXiv:2311.07919},
year={2023}
}
```## Contact Us
If you are interested to leave a message to either our research team or product team, feel free to send an email to [email protected].