Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/RBirkeland/MVCNN-PyTorch
https://github.com/RBirkeland/MVCNN-PyTorch
3d deep-learning neural-network pytorch resnet
Last synced: 3 months ago
JSON representation
- Host: GitHub
- URL: https://github.com/RBirkeland/MVCNN-PyTorch
- Owner: RBirkeland
- License: mit
- Created: 2018-05-15T10:05:18.000Z (over 6 years ago)
- Default Branch: master
- Last Pushed: 2019-02-19T14:26:49.000Z (almost 6 years ago)
- Last Synced: 2024-08-01T03:46:13.826Z (6 months ago)
- Topics: 3d, deep-learning, neural-network, pytorch, resnet
- Language: Python
- Size: 29.3 KB
- Stars: 99
- Watchers: 4
- Forks: 32
- Open Issues: 5
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# MVCNN-PyTorch
## Multi-View CNN built on ResNet/AlexNet to classify 3D objects
A PyTorch implementation of MVCNN using ResNet, inspired by the paper by [Hang Su](http://vis-www.cs.umass.edu/mvcnn/docs/su15mvcnn.pdf).
MVCNN uses multiple 2D images of 3D objects to classify them. You can use the provided dataset or create your own.Also check out my [RotationNet](https://github.com/RBirkeland/RotationNet) implementation whitch outperforms MVCNN (Under construction).
![MVCNN](https://preview.ibb.co/eKcJHy/687474703a2f2f7669732d7777772e63732e756d6173732e6564752f6d76636e6e2f696d616765732f6d76636e6e2e706e67.png)
### Dependencies
* torch
* torchvision
* numpy
* tensorflow (for logging)### Dataset
ModelNet40 12-view PNG dataset can be downloaded from [Google Drive](https://drive.google.com/file/d/0B4v2jR3WsindMUE3N2xiLVpyLW8/view).You can also create your own 2D dataset from 3D objects (.obj, .stl, and .off), using [BlenderPhong](https://github.com/WeiTang114/BlenderPhong)
### Setup
```bash
mkdir checkpoint
mkdir logs
```### Train
To start training, simply point to the path of the downloaded dataset. All the other settings are optional.```
python controller.py [--depth N] [--model MODEL] [--epochs N] [-b N]
[--lr LR] [--momentum M] [--lr-decay-freq W]
[--lr-decay W] [--print-freq N] [-r PATH] [--pretrained]
```To resume from a checkpoint, use the -r tag together with the path to the checkpoint file.
### Tensorboard
To view training logs
```
tensorboard --logdir='logs' --port=6006
```