Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/ReactiveBayes/ReactiveMP.jl
High-performance reactive message-passing based Bayesian inference engine
https://github.com/ReactiveBayes/ReactiveMP.jl
bayesian-inference inference julia message-passing probabilistic-graphical-models probabilistic-programming variational-bayes variational-inference
Last synced: about 1 month ago
JSON representation
High-performance reactive message-passing based Bayesian inference engine
- Host: GitHub
- URL: https://github.com/ReactiveBayes/ReactiveMP.jl
- Owner: ReactiveBayes
- License: mit
- Created: 2019-12-23T15:02:58.000Z (almost 5 years ago)
- Default Branch: main
- Last Pushed: 2024-04-12T15:01:44.000Z (8 months ago)
- Last Synced: 2024-04-13T00:49:46.804Z (8 months ago)
- Topics: bayesian-inference, inference, julia, message-passing, probabilistic-graphical-models, probabilistic-programming, variational-bayes, variational-inference
- Language: Julia
- Homepage:
- Size: 105 MB
- Stars: 89
- Watchers: 13
- Forks: 12
- Open Issues: 20
-
Metadata Files:
- Readme: README.md
- License: LICENSE
- Citation: CITATION.cff
Awesome Lists containing this project
- awesome-sciml - biaslab/ReactiveMP.jl: Julia package for automatic Bayesian inference on a factor graph with reactive message passing
README
# ReactiveMP.jl
| **Documentation** | **Build Status** | **Coverage** | **Zenodo DOI** | **Pkg Eval** |
|:-------------------------------------------------------------------------:|:--------------------------------:|:----------------------------------:|:--------------------------------:|:--------------:|
| [![][docs-stable-img]][docs-stable-url] [![][docs-dev-img]][docs-dev-url] | [![CI][ci-img]][ci-url] | [![Codecov][codecov-img]][codecov-url] | [![DOI][zenodo-img]][zenodo-url] | [![PkgEval][pkgeval-img]][pkgeval-url] |[docs-dev-img]: https://img.shields.io/badge/docs-dev-blue.svg
[docs-dev-url]: https://reactivebayes.github.io/ReactiveMP.jl/dev[docs-stable-img]: https://img.shields.io/badge/docs-stable-blue.svg
[docs-stable-url]: https://reactivebayes.github.io/ReactiveMP.jl/stable[ci-img]: https://github.com/reactivebayes/ReactiveMP.jl/actions/workflows/ci.yml/badge.svg?branch=master
[ci-url]: https://github.com/reactivebayes/ReactiveMP.jl/actions[codecov-img]: https://codecov.io/gh/reactivebayes/ReactiveMP.jl/branch/master/graph/badge.svg
[codecov-url]: https://codecov.io/gh/reactivebayes/ReactiveMP.jl?branch=master[zenodo-img]: https://zenodo.org/badge/DOI/10.5281/zenodo.8381133.svg
[zenodo-url]: https://zenodo.org/doi/10.5281/zenodo.5913616[pkgeval-img]: https://juliaci.github.io/NanosoldierReports/pkgeval_badges/R/ReactiveMP.svg
[pkgeval-url]: https://juliaci.github.io/NanosoldierReports/pkgeval_badges/R/ReactiveMP.html# Reactive message passing engine
ReactiveMP.jl is a Julia package that provides an efficient reactive message passing based Bayesian inference engine on a factor graph. The package is a part of the bigger and user-friendly ecosystem for automatic Bayesian inference called [RxInfer](https://github.com/reactivebayes/RxInfer.jl). While ReactiveMP.jl exports only the inference engine, RxInfer provides convenient tools for model and inference constraints specification as well as routines for running efficient inference both for static and dynamic datasets.
## Examples and tutorials
The ReactiveMP.jl package is intended for advanced users with a deep understanding of message passing principles.
Accesible tutorials and examples are available in the [RxInfer documentation](https://reactivebayes.github.io/RxInfer.jl/stable/).# License
MIT License Copyright (c) 2021-2024 BIASlab, 2024-present ReactiveBayes