Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/RedAIGC/StoryMaker
StoryMaker: Towards consistent characters in text-to-image generation
https://github.com/RedAIGC/StoryMaker
Last synced: 15 days ago
JSON representation
StoryMaker: Towards consistent characters in text-to-image generation
- Host: GitHub
- URL: https://github.com/RedAIGC/StoryMaker
- Owner: RedAIGC
- Created: 2024-09-02T10:48:19.000Z (5 months ago)
- Default Branch: main
- Last Pushed: 2024-12-02T11:46:51.000Z (about 2 months ago)
- Last Synced: 2025-01-09T11:06:58.902Z (19 days ago)
- Language: Python
- Homepage:
- Size: 23 MB
- Stars: 619
- Watchers: 16
- Forks: 53
- Open Issues: 18
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- ai-game-devtools - StoryMaker - to-image Generation. |[arXiv](https://arxiv.org/abs/2409.12576) | | Image | (<span id="image">Image</span> / <span id="tool">Tool (AI LLM)</span>)
- awesome-diffusion-categorized - [Code
README
StoryMaker is a personalization solution preserves not only the consistency of faces but also clothing, hairstyles and bodies in the multiple characters scene, enabling the potential to make a story consisting of a series of images.
Visualization of generated images by StoryMaker. First three rows tell a story about a day in the life of a "office worker" and the last two rows tell a story about a movie of "Before Sunrise".## News
- [2024/11/09] 🔥 We release the training code.
- [2024/09/20] 🔥 We release the [technical report](https://arxiv.org/pdf/2409.12576).
- [2024/09/02] 🔥 We release the [model weights](https://huggingface.co/RED-AIGC/StoryMaker).## Demos
### Two Portraits Synthesis
### Diverse application
## Download
You can directly download the model from [Huggingface](https://huggingface.co/RED-AIGC/StoryMaker).
If you cannot access to Huggingface, you can use [hf-mirror](https://hf-mirror.com/) to download models.
```python
export HF_ENDPOINT=https://hf-mirror.com
huggingface-cli download --resume-download RED-AIGC/StoryMaker --local-dir checkpoints --local-dir-use-symlinks False
```For face encoder, you need to manually download via this [URL](https://github.com/deepinsight/insightface/issues/1896#issuecomment-1023867304) to `models/buffalo_l` as the default link is invalid. Once you have prepared all models, the folder tree should be like:
```
.
├── models
├── checkpoints/mask.bin
├── pipeline_sdxl_storymaker.py
└── README.md
```## Usage
```python
# !pip install opencv-python transformers accelerate insightface
import diffusersimport cv2
import torch
import numpy as np
from PIL import Imagefrom insightface.app import FaceAnalysis
from diffusers import UniPCMultistepScheduler
from pipeline_sdxl_storymaker import StableDiffusionXLStoryMakerPipeline# prepare 'buffalo_l' under ./models
app = FaceAnalysis(name='buffalo_l', root='./', providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
app.prepare(ctx_id=0, det_size=(640, 640))# prepare models under ./checkpoints
face_adapter = f'./checkpoints/mask.bin'
image_encoder_path = 'laion/CLIP-ViT-H-14-laion2B-s32B-b79K' # from https://huggingface.co/laion/CLIP-ViT-H-14-laion2B-s32B-b79Kbase_model = 'huaquan/YamerMIX_v11' # from https://huggingface.co/huaquan/YamerMIX_v11
pipe = StableDiffusionXLStoryMakerPipeline.from_pretrained(
base_model,
torch_dtype=torch.float16
)
pipe.cuda()# load adapter
pipe.load_storymaker_adapter(image_encoder_path, face_adapter, scale=0.8, lora_scale=0.8)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
```Then, you can customized your own images
```python
# load an image and mask
face_image = Image.open("examples/ldh.png").convert('RGB')
mask_image = Image.open("examples/ldh_mask.png").convert('RGB')
face_info = app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))
face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]))[-1] # only use the maximum faceprompt = "a person is taking a selfie, the person is wearing a red hat, and a volcano is in the distance"
n_prompt = "bad quality, NSFW, low quality, ugly, disfigured, deformed"generator = torch.Generator(device='cuda').manual_seed(666)
for i in range(4):
output = pipe(
image=face_image, mask_image=mask_image, face_info=face_info,
prompt=prompt,
negative_prompt=n_prompt,
ip_adapter_scale=0.8, lora_scale=0.8,
num_inference_steps=25,
guidance_scale=7.5,
height=1280, width=960,
generator=generator,
).images[0]
output.save(f'examples/results/ldh666_new_{i}.jpg')
```## Acknowledgements
- Our work is highly inspired by [IP-Adapter](https://github.com/tencent-ailab/IP-Adapter) and [InstantID](https://github.com/instantX-research/InstantID). Thanks for their great works!
- Thanks [Yamer](https://civitai.com/user/Yamer) for developing [YamerMIX](https://civitai.com/models/84040?modelVersionId=309729), we use it as base model in our demo.