Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/RedditSota/state-of-the-art-result-for-machine-learning-problems

This repository provides state of the art (SoTA) results for all machine learning problems. We do our best to keep this repository up to date. If you do find a problem's SoTA result is out of date or missing, please raise this as an issue or submit Google form (with this information: research paper name, dataset, metric, source code and year). We will fix it immediately.
https://github.com/RedditSota/state-of-the-art-result-for-machine-learning-problems

Last synced: 3 months ago
JSON representation

This repository provides state of the art (SoTA) results for all machine learning problems. We do our best to keep this repository up to date. If you do find a problem's SoTA result is out of date or missing, please raise this as an issue or submit Google form (with this information: research paper name, dataset, metric, source code and year). We will fix it immediately.

Awesome Lists containing this project

README

        

# State-of-the-art result for all Machine Learning Problems

### LAST UPDATE: 20th Februray 2019

### NEWS: I am looking for a Collaborator esp who does research in NLP, Computer Vision and Reinforcement learning. If you are not a researcher, but you are willing, contact me. Email me: [email protected]

This repository provides state-of-the-art (SoTA) results for all machine learning problems. We do our best to keep this repository up to date. If you do find a problem's SoTA result is out of date or missing, please raise this as an issue (with this information: research paper name, dataset, metric, source code and year). We will fix it immediately.

You can also submit this [Google Form](https://docs.google.com/forms/d/e/1FAIpQLSe_fFZVCeCVRGGgOQIpoQSXY7mZWynsx7g6WxZEVpO5vJioUA/viewform?embedded=true) if you are new to Github.

This is an attempt to make one stop for all types of machine learning problems state of the art result. I can not do this alone. I need help from everyone. Please submit the Google form/raise an issue if you find SOTA result for a dataset. Please share this on Twitter, Facebook, and other social media.

This summary is categorized into:

- [Supervised Learning](https://github.com/RedditSota/state-of-the-art-result-for-machine-learning-problems#supervised-learning)
- [Speech](https://github.com/RedditSota/state-of-the-art-result-for-machine-learning-problems#speech)
- [Computer Vision](https://github.com/RedditSota/state-of-the-art-result-for-machine-learning-problems#computer-vision)
- [NLP](https://github.com/RedditSota/state-of-the-art-result-for-machine-learning-problems#nlp)
- [Semi-supervised Learning](https://github.com/RedditSota/state-of-the-art-result-for-machine-learning-problems#semi-supervised-learning)
- Computer Vision
- [Unsupervised Learning](https://github.com/RedditSota/state-of-the-art-result-for-machine-learning-problems#unsupervised-learning)
- Speech
- Computer Vision
- [NLP](https://github.com/RedditSota/state-of-the-art-result-for-machine-learning-problems/blob/master/README.md#nlp-1)
- [Transfer Learning](https://github.com/RedditSota/state-of-the-art-result-for-machine-learning-problems#transfer-learning)
- [Reinforcement Learning](https://github.com/RedditSota/state-of-the-art-result-for-machine-learning-problems#reinforcement-learning)

## Supervised Learning

### NLP
#### 1. Language Modelling



Research Paper
Datasets
Metric
Source Code
Year


Language Models are Unsupervised Multitask Learners


  • PTB

  • WikiText-2



  • Perplexity: 35.76

  • Perplexity: 18.34


Tensorflow
2019


BREAKING THE SOFTMAX BOTTLENECK: A HIGH-RANK RNN LANGUAGE MODEL

  • PTB

  • WikiText-2



  • Perplexity: 47.69

  • Perplexity: 40.68


Pytorch
2017


DYNAMIC EVALUATION OF NEURAL SEQUENCE MODELS

  • PTB

  • WikiText-2



  • Perplexity: 51.1

  • Perplexity: 44.3


Pytorch
2017


Averaged Stochastic Gradient Descent
with Weight Dropped LSTM or QRNN


  • PTB

  • WikiText-2



  • Perplexity: 52.8

  • Perplexity: 52.0


Pytorch
2017


FRATERNAL DROPOUT

  • PTB

  • WikiText-2



  • Perplexity: 56.8

  • Perplexity: 64.1


Pytorch
2017


Factorization tricks for LSTM networks
One Billion Word Benchmark
Perplexity: 23.36
Tensorflow
2017

#### 2. Machine Translation



Research Paper
Datasets
Metric
Source Code
Year


Understanding Back-Translation at Scale


  • WMT 2014 English-to-French

  • WMT 2014 English-to-German



  • BLEU: 45.6

  • BLEU: 35.0



2018


WEIGHTED TRANSFORMER NETWORK FOR
MACHINE TRANSLATION


  • WMT 2014 English-to-French

  • WMT 2014 English-to-German



  • BLEU: 41.4

  • BLEU: 28.9



2017


Attention Is All You Need

  • WMT 2014 English-to-French

  • WMT 2014 English-to-German



  • BLEU: 41.0

  • BLEU: 28.4



2017


NON-AUTOREGRESSIVE
NEURAL MACHINE TRANSLATION

  • WMT16 Ro→En

  • BLEU: 31.44


2017


Improving Neural Machine Translation with Conditional Sequence Generative Adversarial Nets

  • NIST02

  • NIST03

  • NIST04

  • NIST05


  • 38.74
  • 36.01
  • 37.54
  • 33.76


  • 2017


    #### 3. Text Classification



    Research Paper
    Datasets
    Metric
    Source Code
    Year


    Learning Structured Text Representations
    Yelp
    Accuracy: 68.6


    2017


    Attentive Convolution
    Yelp
    Accuracy: 67.36

    2017

    #### 4. Natural Language Inference
    Leader board:

    [Stanford Natural Language Inference (SNLI)](https://nlp.stanford.edu/projects/snli/)

    [MultiNLI](https://www.kaggle.com/c/multinli-matched-open-evaluation/leaderboard)



    Research Paper
    Datasets
    Metric
    Source Code
    Year


    NATURAL LANGUAGE INFERENCE OVER INTERACTION SPACE
    Stanford Natural Language Inference (SNLI)
    Accuracy: 88.9
    Tensorflow
    2017


    BERT-LARGE (ensemble)
    Multi-Genre Natural Language Inference (MNLI)


    • Matched accuracy: 86.7

    • Mismatched accuracy: 85.9



    2018

    #### 5. Question Answering
    Leader Board

    [SQuAD](https://rajpurkar.github.io/SQuAD-explorer/)



    Research Paper
    Datasets
    Metric
    Source Code
    Year


    BERT-LARGE (ensemble)
    The Stanford Question Answering Dataset


    • Exact Match: 87.4

    • F1: 93.2



    2018

    #### 6. Named entity recognition



    Research Paper
    Datasets
    Metric
    Source Code
    Year


    Named Entity Recognition in Twitter using Images and Text
    Ritter

    • F-measure: 0.59

    NOT FOUND
    2017

    #### 7. Abstractive Summarization

    Research Paper | Datasets | Metric | Source Code | Year
    ------------ | ------------- | ------------ | ------------- | -------------
    [Cutting-off redundant repeating generations for neural abstractive summarization](https://aclanthology.info/pdf/E/E17/E17-2047.pdf) |


    • DUC-2004

    • Gigaword

    |

    • DUC-2004


      • ROUGE-1: **32.28**

      • ROUGE-2: 10.54

      • ROUGE-L: **27.80**


    • Gigaword


      • ROUGE-1: **36.30**

      • ROUGE-2: 17.31

      • ROUGE-L: **33.88**


    | NOT YET AVAILABLE | 2017
    [Convolutional Sequence to Sequence](https://arxiv.org/pdf/1705.03122.pdf) |

    • DUC-2004

    • Gigaword

    |

    • DUC-2004


      • ROUGE-1: 33.44

      • ROUGE-2: **10.84**

      • ROUGE-L: 26.90


    • Gigaword


      • ROUGE-1: 35.88

      • ROUGE-2: 27.48

      • ROUGE-L: 33.29


    | [PyTorch](https://github.com/facebookresearch/fairseq-py) | 2017

    #### 8. Dependency Parsing

    Research Paper | Datasets | Metric | Source Code | Year
    ------------ | ------------- | ------------ | ------------- | -------------
    [Globally Normalized Transition-Based Neural Networks](https://arxiv.org/pdf/1603.06042.pdf) |

    • Final CoNLL ’09 dependency parsing
    |

    • 94.08% UAS accurancy
    • 92.15% LAS accurancy

    |
    • [SyntaxNet](https://github.com/tensorflow/models/tree/master/research/syntaxnet)
    |
    • 2017

    ### Computer Vision

    #### 1. Classification



    Research Paper
    Datasets
    Metric
    Source Code
    Year


    Dynamic Routing Between Capsules

    • MNIST

    • Test Error: 0.25±0.005


    2017


    High-Performance Neural Networks for Visual Object Classification
    • NORB

    • Test Error: 2.53 ± 0.40


    2011


    Giant AmoebaNet with GPipe

    • CIFAR-10
    • CIFAR-100

    • ImageNet-1k

    • ...



    • Test Error: 1.0%
    • Test Error: 8.7%

    • Top-1 Error 15.7

    • ...



    2018


    ShakeDrop regularization

    • CIFAR-10
    • CIFAR-100



    • Test Error: 2.31%
    • Test Error: 12.19%



    2017


    Aggregated Residual Transformations for Deep Neural Networks
    • CIFAR-10

    • Test Error: 3.58%


    2017


    Random Erasing Data Augmentation

    • CIFAR-10
    • CIFAR-100
    • Fashion-MNIST

         

    • Test Error: 3.08%

    • Test Error: 17.73%

    • Test Error: 3.65%


    Pytorch
    2017


    EraseReLU: A Simple Way to Ease the Training of Deep Convolution Neural Networks

    • CIFAR-10
    • CIFAR-100

         

    • Test Error: 3.56%

    • Test Error: 16.53%


    Pytorch
    2017


    Dynamic Routing Between Capsules
    • MultiMNIST

    • Test Error: 5%


    2017


    Learning Transferable Architectures for Scalable Image Recognition
    • ImageNet-1k

    • Top-1 Error:17.3


    2017


    Squeeze-and-Excitation Networks
    • ImageNet-1k

    • Top-1 Error: 18.68


    2017


    Aggregated Residual Transformations for Deep Neural Networks
    • ImageNet-1k

    • Top-1 Error: 20.4%


    2016

    #### 2. Instance Segmentation



    Research Paper
    Datasets
    Metric
    Source Code
    Year


    Mask R-CNN

    • COCO

    • Average Precision: 37.1%


    2017

    #### 3. Visual Question Answering



    Research Paper
    Datasets
    Metric
    Source Code
    Year


    Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challenge

    • VQA

    • Overall score: 69


    2017

    #### 4. Person Re-identification



    Research Paper
    Datasets
    Metric
    Source Code
    Year


    Random Erasing Data Augmentation


         

    • Rank-1: 89.13 mAP: 83.93

    • Rank-1: 84.02 mAP: 78.28

    • labeled (Rank-1: 63.93 mAP: 65.05) detected (Rank-1: 64.43 mAP: 64.75)


    Pytorch
    2017

    ### Speech
    [Speech SOTA](https://github.com/syhw/wer_are_we)
    #### 1. ASR



    Research Paper
    Datasets
    Metric
    Source Code
    Year


    The Microsoft 2017 Conversational Speech Recognition System

    • Switchboard Hub5'00

    • WER: 5.1


    2017


    The CAPIO 2017 Conversational Speech Recognition System
    • Switchboard Hub5'00

    • WER: 5.0


    2017

    ## Semi-supervised Learning
    #### Computer Vision



    Research Paper
    Datasets
    Metric
    Source Code
    Year


    DISTRIBUTIONAL SMOOTHINGWITH VIRTUAL ADVERSARIAL TRAINING


    • SVHN

    • NORB



    • Test error: 24.63

    • Test error: 9.88


    Theano
    2016


    Virtual Adversarial Training:
    a Regularization Method for Supervised and
    Semi-supervised Learning

    • MNIST

    • Test error: 1.27


    2017


    Few Shot Object Detection

    • VOC2007

    • VOC2012



    • mAP : 41.7

    • mAP : 35.4



    2017


    Unlabeled Samples Generated by GAN
    Improve the Person Re-identification Baseline in vitro


         

    • Rank-1: 83.97 mAP: 66.07

    • Rank-1: 84.6 mAP: 87.4

    • Rank-1: 67.68 mAP: 47.13

    •          
    • Test Accuracy: 84.4


    Matconvnet
    2017


    ## Unsupervised Learning

    #### Computer Vision
    ##### 1. Generative Model



    Research Paper
    Datasets
    Metric
    Source Code
    Year


    PROGRESSIVE GROWING OF GANS FOR IMPROVED QUALITY, STABILITY, AND VARIATION
    Unsupervised CIFAR 10
    Inception score: 8.80
    Theano
    2017

    ### NLP

    #### Machine Translation



    Research Paper
    Datasets
    Metric
    Source Code
    Year

    UNSUPERVISED MACHINE TRANSLATION
    USING MONOLINGUAL CORPORA ONLY

    • Multi30k-Task1(en-fr fr-en de-en en-de)

    • BLEU:(32.76 32.07 26.26 22.74)


    2017


    Unsupervised Neural Machine Translation with Weight Sharing

    • WMT14(en-fr fr-en)

    • WMT16 (de-en en-de)



    • BLEU:(16.97 15.58)
    • BLEU:(14.62 10.86)



    2018


    ## Transfer Learning



    Research Paper
    Datasets
    Metric
    Source Code
    Year

    One Model To Learn Them All


    • WMT EN → DE

    • WMT EN → FR (BLEU)

    • ImageNet (top-5 accuracy)



    • BLEU: 21.2
    • BLEU:30.5

    • 86%



    2017


    ## Reinforcement Learning



    Research Paper
    Datasets
    Metric
    Source Code
    Year

    Mastering the game of Go without human knowledge
    the game of Go
    ElO Rating: 5185


    2017


    Email: [email protected]