Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/SKTBrain/KoBERT

Korean BERT pre-trained cased (KoBERT)
https://github.com/SKTBrain/KoBERT

bert korean-nlp language-model nlp pytorch transformers

Last synced: 2 months ago
JSON representation

Korean BERT pre-trained cased (KoBERT)

Awesome Lists containing this project

README

        

# KoBERT

* [KoBERT](#kobert)
* [Korean BERT pre-trained cased (KoBERT)](#korean-bert-pre-trained-cased-kobert)
* [Why'?'](#why)
* [Training Environment](#training-environment)
* [Requirements](#requirements)
* [How to install](#how-to-install)
* [How to use](#how-to-use)
* [Using with PyTorch](#using-with-pytorch)
* [Using with ONNX](#using-with-onnx)
* [Using with MXNet-Gluon](#using-with-mxnet-gluon)
* [Tokenizer](#tokenizer)
* [Subtasks](#subtasks)
* [Naver Sentiment Analysis](#naver-sentiment-analysis)
* [KoBERT와 CRF로 만든 한국어 객체명인식기](#kobert와-crf로-만든-한국어-객체명인식기)
* [Korean Sentence BERT](#korean-sentence-bert)
* [Release](#release)
* [Contacts](#contacts)
* [License](#license)

---

## Korean BERT pre-trained cased (KoBERT)

### Why'?'

* 구글 [BERT base multilingual cased](https://github.com/google-research/bert/blob/master/multilingual.md)의 한국어 성능 한계

### Training Environment

* Architecture

```python
predefined_args = {
'attention_cell': 'multi_head',
'num_layers': 12,
'units': 768,
'hidden_size': 3072,
'max_length': 512,
'num_heads': 12,
'scaled': True,
'dropout': 0.1,
'use_residual': True,
'embed_size': 768,
'embed_dropout': 0.1,
'token_type_vocab_size': 2,
'word_embed': None,
}
```

* 학습셋

| 데이터 | 문장 | 단어 |
| ----------- | ---- | ---- |
| 한국어 위키 | 5M | 54M |

* 학습 환경
* V100 GPU x 32, Horovod(with InfiniBand)

![2019-04-29 텐서보드 로그](imgs/2019-04-29_TensorBoard.png)

* 사전(Vocabulary)
* 크기 : 8,002
* 한글 위키 기반으로 학습한 토크나이저(SentencePiece)
* Less number of parameters(92M < 110M )

### Requirements

* see [requirements.txt](https://github.com/SKTBrain/KoBERT/blob/master/requirements.txt)

### How to install

* Install KoBERT as a python package

```sh
pip install git+https://[email protected]/SKTBrain/KoBERT.git@master
```

* If you want to modify source codes, please clone this repository

```sh
git clone https://github.com/SKTBrain/KoBERT.git
cd KoBERT
pip install -r requirements.txt
```

---

## How to use

### PyTorch

*Huggingface transformers API가 편하신 분은 [여기](kobert_hf)를 참고하세요.*

```python
>>> import torch
>>> from kobert import get_pytorch_kobert_model
>>> input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
>>> input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
>>> token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
>>> model, vocab = get_pytorch_kobert_model()
>>> sequence_output, pooled_output = model(input_ids, input_mask, token_type_ids)
>>> pooled_output.shape
torch.Size([2, 768])
>>> vocab
Vocab(size=8002, unk="[UNK]", reserved="['[MASK]', '[SEP]', '[CLS]']")
>>> # Last Encoding Layer
>>> sequence_output[0]
tensor([[-0.2461, 0.2428, 0.2590, ..., -0.4861, -0.0731, 0.0756],
[-0.2478, 0.2420, 0.2552, ..., -0.4877, -0.0727, 0.0754],
[-0.2472, 0.2420, 0.2561, ..., -0.4874, -0.0733, 0.0765]],
grad_fn=)
```

`model`은 디폴트로 `eval()`모드로 리턴됨, 따라서 학습 용도로 사용시 `model.train()`명령을 통해 학습 모드로 변경할 필요가 있다.

* Naver Sentiment Analysis Fine-Tuning with pytorch
* Colab에서 [런타임] - [런타임 유형 변경] - 하드웨어 가속기(GPU) 사용을 권장합니다.
* [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/SKTBrain/KoBERT/blob/master/scripts/NSMC/naver_review_classifications_pytorch_kobert.ipynb)

### ONNX

```python
>>> import onnxruntime
>>> import numpy as np
>>> from kobert import get_onnx_kobert_model
>>> onnx_path = get_onnx_kobert_model()
>>> sess = onnxruntime.InferenceSession(onnx_path)
>>> input_ids = [[31, 51, 99], [15, 5, 0]]
>>> input_mask = [[1, 1, 1], [1, 1, 0]]
>>> token_type_ids = [[0, 0, 1], [0, 1, 0]]
>>> len_seq = len(input_ids[0])
>>> pred_onnx = sess.run(None, {'input_ids':np.array(input_ids),
>>> 'token_type_ids':np.array(token_type_ids),
>>> 'input_mask':np.array(input_mask),
>>> 'position_ids':np.array(range(len_seq))})
>>> # Last Encoding Layer
>>> pred_onnx[-2][0]
array([[-0.24610452, 0.24282141, 0.25895312, ..., -0.48613444,
-0.07305173, 0.07560554],
[-0.24783179, 0.24200465, 0.25520486, ..., -0.4877185 ,
-0.0727044 , 0.07536091],
[-0.24721591, 0.24196623, 0.2560626 , ..., -0.48743123,
-0.07326943, 0.07650235]], dtype=float32)
```

_ONNX 컨버팅은 [soeque1](https://github.com/soeque1)께서 도움을 주셨습니다._

### MXNet-Gluon

```python
>>> import mxnet as mx
>>> from kobert import get_mxnet_kobert_model
>>> input_id = mx.nd.array([[31, 51, 99], [15, 5, 0]])
>>> input_mask = mx.nd.array([[1, 1, 1], [1, 1, 0]])
>>> token_type_ids = mx.nd.array([[0, 0, 1], [0, 1, 0]])
>>> model, vocab = get_mxnet_kobert_model(use_decoder=False, use_classifier=False)
>>> encoder_layer, pooled_output = model(input_id, token_type_ids)
>>> pooled_output.shape
(2, 768)
>>> vocab
Vocab(size=8002, unk="[UNK]", reserved="['[MASK]', '[SEP]', '[CLS]']")
>>> # Last Encoding Layer
>>> encoder_layer[0]
[[-0.24610372 0.24282135 0.2589539 ... -0.48613444 -0.07305248
0.07560539]
[-0.24783105 0.242005 0.25520545 ... -0.48771808 -0.07270523
0.07536077]
[-0.24721491 0.241966 0.25606337 ... -0.48743105 -0.07327032
0.07650219]]

```

* Naver Sentiment Analysis Fine-Tuning with MXNet
* [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/SKTBrain/KoBERT/blob/master/scripts/NSMC/naver_review_classifications_gluon_kobert.ipynb)

### Tokenizer

* Pretrained [Sentencepiece](https://github.com/google/sentencepiece) tokenizer

```python
>>> from gluonnlp.data import SentencepieceTokenizer
>>> from kobert import get_tokenizer
>>> tok_path = get_tokenizer()
>>> sp = SentencepieceTokenizer(tok_path)
>>> sp('한국어 모델을 공유합니다.')
['▁한국', '어', '▁모델', '을', '▁공유', '합니다', '.']
```

---

## Task Fine-tuning

### Naver Sentiment Analysis

* Dataset :

| Model | Accuracy |
| --------------------------------------------------------------------------------------------------- | --------------------------------------------------------------- |
| [BERT base multilingual cased](https://github.com/google-research/bert/blob/master/multilingual.md) | 0.875 |
| KoBERT | **[0.901](logs/bert_naver_small_512_news_simple_20190624.txt)** |
| [KoGPT2](https://github.com/SKT-AI/KoGPT2) | 0.899 |

### KoBERT와 CRF로 만든 한국어 객체명인식기

*

```text
문장을 입력하세요: SKTBrain에서 KoBERT 모델을 공개해준 덕분에 BERT-CRF 기반 객체명인식기를 쉽게 개발할 수 있었다.
len: 40, input_token:['[CLS]', '▁SK', 'T', 'B', 'ra', 'in', '에서', '▁K', 'o', 'B', 'ER', 'T', '▁모델', '을', '▁공개', '해', '준', '▁덕분에', '▁B', 'ER', 'T', '-', 'C', 'R', 'F', '▁기반', '▁', '객', '체', '명', '인', '식', '기를', '▁쉽게', '▁개발', '할', '▁수', '▁있었다', '.', '[SEP]']
len: 40, pred_ner_tag:['[CLS]', 'B-ORG', 'I-ORG', 'I-ORG', 'I-ORG', 'I-ORG', 'O', 'B-POH', 'I-POH', 'I-POH', 'I-POH', 'I-POH', 'O', 'O', 'O', 'O', 'O', 'O', 'B-POH', 'I-POH', 'I-POH', 'I-POH', 'I-POH', 'I-POH', 'I-POH', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', '[SEP]']
decoding_ner_sentence: [CLS] 에서 모델을 공개해준 덕분에 기반 객체명인식기를 쉽게 개발할 수 있었다.[SEP]
```

### Korean Sentence BERT

*

|Model|Cosine Pearson|Cosine Spearman|Euclidean Pearson|Euclidean Spearman|Manhattan Pearson|Manhattan Spearman|Dot Pearson|Dot Spearman|
|:------------------------:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|:----:|
|NLl|65.05|68.48|68.81|68.18|68.90|68.20|65.22|66.81|
|STS|**80.42**|**79.64**|**77.93**|77.43|**77.92**|77.44|**76.56**|**75.83**|
|STS + NLI|78.81|78.47|77.68|**77.78**|77.71|**77.83**|75.75|75.22|
---

## Release

* v0.2.3
* support `onnx 1.8.0`
* v0.2.2
* fix `No module named 'kobert.utils'`
* v0.2.1
* guide default 'import statements'
* v0.2
* download large files from `aws s3`
* rename functions
* v0.1.2
* Guaranteed compatibility with higher versions of transformers
* fix pad token index id
* v0.1.1
* 사전(vocabulary)과 토크나이저 통합
* v0.1
* 초기 모델 릴리즈

## Contacts

`KoBERT` 관련 이슈는 [이곳](https://github.com/SKTBrain/KoBERT/issues)에 등록해 주시기 바랍니다.

## License

`KoBERT`는 `Apache-2.0` 라이선스 하에 공개되어 있습니다. 모델 및 코드를 사용할 경우 라이선스 내용을 준수해주세요. 라이선스 전문은 `LICENSE` 파일에서 확인하실 수 있습니다.