An open API service indexing awesome lists of open source software.

https://github.com/SYSU-SAIL/PASSRnet

[CVPR 2019] Learning Parallax Attention for Stereo Image Super-Resolution
https://github.com/SYSU-SAIL/PASSRnet

depth-estimation parallax stereo-matching super-resolution

Last synced: about 2 months ago
JSON representation

[CVPR 2019] Learning Parallax Attention for Stereo Image Super-Resolution

Awesome Lists containing this project

README

          

# PASSRnet: Parallax Attention Stereo Super-Resolution Network
Pytorch implementation of "Learning Parallax Attention for Stereo Image Super-Resolution", CVPR 2019

[[arXiv]](https://arxiv.org/abs/1903.05784) [[CVF]](http://openaccess.thecvf.com/content_CVPR_2019/papers/Wang_Learning_Parallax_Attention_for_Stereo_Image_Super-Resolution_CVPR_2019_paper.pdf) [[Supp]](http://openaccess.thecvf.com/content_CVPR_2019/supplemental/Wang_Learning_Parallax_Attention_CVPR_2019_supplemental.pdf)

## Overview
![overview](./Figs/Overview.png)

Figure 1. Overview of our PASSRnet network.

Figure 2. Illustration of our parallax-attention mechanism.

Figure 3. A toy example illustration of the parallax-attention and cycle-attention maps generated by our PAM.
The attention maps (30×30) correspond to the regions (1×30) marked by a yellow stroke. In (a) and (b), the first row
represents left/right stereo images, the second row stands for parallax-attention maps, and the last row represents cycle-attention maps.

## [Flickr1024 Dataset](https://yingqianwang.github.io/Flickr1024/)

Figure 4. The Flickr1024 dataset.

## Requirements
- pytorch (0.4), torchvision (0.2) (Note: The code is tested with `python=3.6, cuda=9.0`)
- Matlab (For training/test data generation)

## Train
### Prepare training data
1. Download the Flickr1024 dataset and put the images in `data/train/Flickr1024`
(Note: In our paper, we also use 60 images in the Middlebury dataset as the training set.)
2. Cd to `data/train` and run `generate_trainset.m` to generate training data.

### Begin to train
```bash
python train.py --scale_factor 4 --device cuda:0 --batch_size 32 --n_epochs 80 --n_steps 30
```

## Test
### Prepare test data
1. Download the [KITTI2012](http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=stereo) dataset and put folders `testing/colored_0` and `testing/colored_1` in `data/test/KITTI2012/original`
2. Cd to `data/test` and run `generate_testset.m` to generate test data.
3. (optional) You can also download KITTI2015, Middlebury or other stereo datasets and prepare test data in `data/test` as below:
```
data
└── test
├── dataset_1
├── hr
├── scene_1
├── hr0.png
└── hr1.png
├── ...
└── scene_M
└── lr_x4
├── scene_1
├── lr0.png
└── lr1.png
├── ...
└── scene_M
├── ...
└── dataset_N
```

### Demo
```bash
python demo_test.py --scale_factor 4 --device cuda:0 --dataset KITTI2012
```

## Results
![2x](./Figs/results_2x_KITTI2012_KITTI2015.png)

Figure 5. Visual comparison for 2× SR. These results are achieved on “test_image_013” of the KITTI 2012 dataset and “test_image_019” of the KITTI 2015 dataset.

![4x](./Figs/results_4x_KITTI2015.png)

Figure 6. Visual comparison for 4× SR. These results are achieved on “test_image_004” of the KITTI 2015 dataset.

![2x](./Figs/results_2x_lab.png)

Figure 7. Visual comparison for 2× SR. These results are achieved on a stereo image pair acquired in our laboratory.

## Citation
```
@InProceedings{Wang2019Learning,
author = {Longguang Wang and Yingqian Wang and Zhengfa Liang and Zaiping Lin and Jungang Yang and Wei An and Yulan Guo},
title = {Learning Parallax Attention for Stereo Image Super-Resolution},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year = {2019},
}
```
## Contact
For questions, please send an email to wanglongguang15@nudt.edu.cn