Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/SamsungLabs/SwissDINO
Code release of our paper: "Swiss DINO: Efficient and Versatile Vision Framework for On-device Personal Object Search"; Kirill Paramonov, Jia-Xing Zhong, Umberto Michieli, Jijoong Moon, Mete Ozay; IROS 2024.
https://github.com/SamsungLabs/SwissDINO
Last synced: about 1 month ago
JSON representation
Code release of our paper: "Swiss DINO: Efficient and Versatile Vision Framework for On-device Personal Object Search"; Kirill Paramonov, Jia-Xing Zhong, Umberto Michieli, Jijoong Moon, Mete Ozay; IROS 2024.
- Host: GitHub
- URL: https://github.com/SamsungLabs/SwissDINO
- Owner: SamsungLabs
- License: other
- Created: 2024-10-24T06:39:23.000Z (3 months ago)
- Default Branch: master
- Last Pushed: 2024-10-24T10:54:35.000Z (3 months ago)
- Last Synced: 2024-10-25T09:35:27.307Z (3 months ago)
- Language: Python
- Size: 22.5 KB
- Stars: 1
- Watchers: 4
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE.md
Awesome Lists containing this project
- Awesome-Segment-Anything - [code
README
# SwissDINO
Official implementation of our work **SwissDINO**, published in [IROS2024](https://arxiv.org/abs/2407.07541).
In this paper, we present a one-shot personal object search method based on the recent DINOv2 transformer model. Swiss DINO handles challenging on-device personalized scene understanding requirements and does not require any adaptation training.![image](https://github.com/user-attachments/assets/335eba04-46e4-4dbc-ab93-15611f75cb40)
## Install requirements
Install conda environment with
```
$ conda env create -f swiss_dino_env.yml
```## Download datasets
We use two datasets for evaluation of the method: PerSeg (https://github.com/ZrrSkywalker/Personalize-SAM#preparation) and ICubWorld (https://robotology.github.io/iCubWorld/#icubworld-transformations-modal).
Download and extract a chosen dataset, and set `$DATA_DIR` to the root dataset path.
## Run evaluation
To run evaluation on PerSeg dataset:
```
python swiss_dino_evaluation.py --dataset_name perseg --data_dir $DATA_DIR --fe_model_type vit_s --verbose
```To run evaluation on ICubWorld dataset:
```
python swiss_dino_evaluation.py --dataset_name icubworld --data_dir $DATA_DIR --fe_model_type vit_s --verbose
```The evaluation script generates `log.txt` file with per-class metrics.
## Run inference
The inference is not supported yet.
## Cite us
If you use this repository, please cite our work
@article{paramonov2024swiss,
title={Swiss DINO: Efficient and Versatile Vision Framework for On-device Personal Object Search},
author={Paramonov, Kirill and Zhong, Jia-Xing and Michieli, Umberto and Moon, Jijoong and Ozay, Mete},
journal={IROS},
year={2024}
}