Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/SciScala/NDScala
N-dimensional / multi-dimensional arrays (tensors) in Scala 3. Think NumPy ndarray / PyTorch Tensor but type-safe over shapes, array/axis labels & numeric data types
https://github.com/SciScala/NDScala
array-programming dotty machine-learning matrix multi-dimensional-array n-dimensional-array named-tensor ndarray neural-networks numerical-computing numpy scala scala-3 scala3 shape-safety tensor
Last synced: about 2 months ago
JSON representation
N-dimensional / multi-dimensional arrays (tensors) in Scala 3. Think NumPy ndarray / PyTorch Tensor but type-safe over shapes, array/axis labels & numeric data types
- Host: GitHub
- URL: https://github.com/SciScala/NDScala
- Owner: SciScala
- License: agpl-3.0
- Created: 2020-06-14T13:57:45.000Z (over 4 years ago)
- Default Branch: main
- Last Pushed: 2022-12-22T18:02:46.000Z (about 2 years ago)
- Last Synced: 2024-08-04T00:06:29.292Z (5 months ago)
- Topics: array-programming, dotty, machine-learning, matrix, multi-dimensional-array, n-dimensional-array, named-tensor, ndarray, neural-networks, numerical-computing, numpy, scala, scala-3, scala3, shape-safety, tensor
- Language: Scala
- Homepage:
- Size: 182 KB
- Stars: 48
- Watchers: 7
- Forks: 6
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE.txt
Awesome Lists containing this project
- awesome-scala - NDScala - dimensional arrays in Scala 3. Think NumPy ndarray, but type-safe over shapes, array/axis labels & numeric data types | ![GitHub stars](https://img.shields.io/github/stars/SciScala/NDScala) ![GitHub commit activity](https://img.shields.io/github/commit-activity/y/SciScala/NDScala) (Table of Contents / Science and Data Analysis)
README
Training a (shape-safe) neural network in 10 lines:
In NDScala:
```scala
//After some setup
//Declaring types and their corresponding values
type Mat10kX10k = 10000 #: 10000 #:SNil
type AxisLabels = "AxisLabel" ##: "AxisLabel" ##: TSNil
val mat10kX10k = shapeOf[Mat10kX10k]
val axisLabels = tensorShapeDenotationOf[AxisLabels]val ones = Tensor(Array.fill(100000000)(1.0f),"TensorLabel",axisLabels, mat10kX10k)
def train(x: Tensor[Float, ("TensorLabel", AxisLabels, Mat10kX10k)],
y: Tensor[Float, ("TensorLabel", AxisLabels, Mat10kX10k)],
w0: Tensor[Float, ("TensorLabel", AxisLabels, Mat10kX10k)],
w1: Tensor[Float, ("TensorLabel", AxisLabels, Mat10kX10k)],
iter: Int): Tuple2[Tensor[Float, ("TensorLabel", AxisLabels, Mat10kX10k)],
Tensor[Float, ("TensorLabel", AxisLabels, Mat10kX10k)]] =
if iter == 0 then (w0, w1)
else
val l1 = (x.matmul(w0)).sigmoid()
val l2 = (l1.matmul(w1)).sigmoid()
val error = y - l2
val l2Delta = (error) * (l2 * (ones - l2))
val l1Delta = (l2Delta.matmul(w1.transpose))
val w1New = w1 + (((l1.transpose).matmul(l2Delta)))
val w0New = w0 + (((x.transpose).matmul(l1Delta)))
train(x,y,w0New,w1New,iter-1)
```And for reference, in NumPy, in 10 lines:
```python
def train(X,Y,iter):
syn0 = 2*np.random.random((10000,10000)).astype('float32') - 1
syn1 = 2*np.random.random((10000,1000)).astype('float32') - 1
for j in range(iter):
l1 = 1/(1+np.exp(-(np.dot(X,syn0))))
l2 = 1/(1+np.exp(-(np.dot(l1,syn1))))
error = y - l2
l2_delta = (error)*(l2*(1-l2))
l1_delta = l2_delta.dot(syn1.T) * (l1 * (1-l1))
syn1 += l1.T.dot(l2_delta)
syn0 += X.T.dot(l1_delta)
```The run time of the NDScala version is ~80% of that of NumPy w/MKL
The PyTorch equivalent is slightly faster, at ~85% of the NDScala version run time.
This can be accounted for by the copy overhead of passing data between the JVM and native memory.