An open API service indexing awesome lists of open source software.

https://github.com/Sense-GVT/Fast-BEV

Fast-BEV: A Fast and Strong Bird’s-Eye View Perception Baseline
https://github.com/Sense-GVT/Fast-BEV

2d-to-3d 3d autonomous autonomous-driving bird-eye-view detection multi-camera

Last synced: about 1 month ago
JSON representation

Fast-BEV: A Fast and Strong Bird’s-Eye View Perception Baseline

Awesome Lists containing this project

README

        

# Fast-BEV

[Fast-BEV: A Fast and Strong Bird’s-Eye View Perception Baseline](https://arxiv.org/abs/2301.12511)
![image](https://github.com/Sense-GVT/Fast-BEV/blob/main/fast-bev++.png)
![image](https://github.com/Sense-GVT/Fast-BEV/blob/main/benchmark_setting.png)
![image](https://github.com/Sense-GVT/Fast-BEV/blob/main/benchmark.png)

## Better Inference Implementation
Thanks to the repository [CUDA-FastBEV](https://github.com/Mandylove1993/CUDA-FastBEV) inference using CUDA & TensorRT. And provide PTQ and QAT int8 quantization code.
You can refer to it to get faster speed.

## Usage

[usage](https://github.com/Sense-GVT/Fast-BEV/blob/dev/tools/fastbev_run.sh)

### Installation

* CUDA>=9.2
* GCC>=5.4
* Python>=3.6
* Pytorch>=1.8.1
* Torchvision>=0.9.1
* MMCV-full==1.4.0
* MMDetection==2.14.0
* MMSegmentation==0.14.1

### Dataset preparation

```
.
├── data
│   └── nuscenes
│   ├── maps
│   ├── maps_bev_seg_gt_2class
│   ├── nuscenes_infos_test_4d_interval3_max60.pkl
│   ├── nuscenes_infos_train_4d_interval3_max60.pkl
│   ├── nuscenes_infos_val_4d_interval3_max60.pkl
│   ├── v1.0-test
│   └── v1.0-trainval
```

[download](https://drive.google.com/drive/folders/10KyLm0xW3QiLhAefxBbXR-Hw_7nel_tm?usp=sharing)

### Pretraining

```
.
├── pretrained_models
│ ├── cascade_mask_rcnn_r18_fpn_coco-mstrain_3x_20e_nuim_bbox_mAP_0.5110_segm_mAP_0.4070.pth
│ ├── cascade_mask_rcnn_r34_fpn_coco-mstrain_3x_20e_nuim_bbox_mAP_0.5190_segm_mAP_0.4140.pth
│ └── cascade_mask_rcnn_r50_fpn_coco-mstrain_3x_20e_nuim_bbox_mAP_0.5400_segm_mAP_0.4300.pth
```

[download](https://drive.google.com/drive/folders/19BD4totDHtwnHtOqTdn0xYJh7stwYd9l?usp=sharing)

### Training

```
.
├── work_dirs
└── fastbev
└── exp
└── paper
└── fastbev_m0_r18_s256x704_v200x200x4_c192_d2_f4
│ ├── epoch_20.pth
│ ├── latest.pth -> epoch_20.pth
│ ├── log.eval.fastbev_m0_r18_s256x704_v200x200x4_c192_d2_f4.02062323.txt
│ └── log.test.fastbev_m0_r18_s256x704_v200x200x4_c192_d2_f4.02062309.txt
├── fastbev_m1_r18_s320x880_v200x200x4_c192_d2_f4
│ ├── epoch_20.pth
│ ├── latest.pth -> epoch_20.pth
│ ├── log.eval.fastbev_m1_r18_s320x880_v200x200x4_c192_d2_f4.02080000.txt
│ └── log.test.fastbev_m1_r18_s320x880_v200x200x4_c192_d2_f4.02072346.txt
├── fastbev_m2_r34_s256x704_v200x200x4_c224_d4_f4
│ ├── epoch_20.pth
│ ├── latest.pth -> epoch_20.pth
│ ├── log.eval.fastbev_m2_r34_s256x704_v200x200x4_c224_d4_f4.02080021.txt
│ └── log.test.fastbev_m2_r34_s256x704_v200x200x4_c224_d4_f4.02080005.txt
├── fastbev_m4_r50_s320x880_v250x250x6_c256_d6_f4
│ ├── epoch_20.pth
│ ├── latest.pth -> epoch_20.pth
│ ├── log.eval.fastbev_m4_r50_s320x880_v250x250x6_c256_d6_f4.02080021.txt
│ └── log.test.fastbev_m4_r50_s320x880_v250x250x6_c256_d6_f4.02080005.txt
└── fastbev_m5_r50_s512x1408_v250x250x6_c256_d6_f4
├── epoch_20.pth
├── latest.pth -> epoch_20.pth
├── log.eval.fastbev_m5_r50_s512x1408_v250x250x6_c256_d6_f4.02080021.txt
└── log.test.fastbev_m5_r50_s512x1408_v250x250x6_c256_d6_f4.02080001.txt
```

[download](https://drive.google.com/drive/folders/1Ja9mqOE0iGPysVxmLSrZyUoCEBYu5fMH?usp=sharing)

### Deployment
TODO

## View Transformation Latency on device
[2D-to-3D on CUDA & CPU](https://github.com/Sense-GVT/Fast-BEV/tree/dev/script/view_tranform_cuda)

## Citation
```
@article{li2023fast,
title={Fast-BEV: A Fast and Strong Bird's-Eye View Perception Baseline},
author={Li, Yangguang and Huang, Bin and Chen, Zeren and Cui, Yufeng and Liang, Feng and Shen, Mingzhu and Liu, Fenggang and Xie, Enze and Sheng, Lu and Ouyang, Wanli and others},
journal={arXiv preprint arXiv:2301.12511},
year={2023}
}
```