An open API service indexing awesome lists of open source software.

https://github.com/SeonmiP/KineTy

Official Code for "Kinetic Typography Diffusion Model (ECCV 2024)"
https://github.com/SeonmiP/KineTy

eccv2024 kinetic-typography video-generation

Last synced: 3 months ago
JSON representation

Official Code for "Kinetic Typography Diffusion Model (ECCV 2024)"

Awesome Lists containing this project

README

        

Kinetic Typography Diffusion Model



Seonmi Park
·
Inhwan Bae
·
Seunghyun Shin
·
Hae-Gon Jeon


ECCV 2024


Project Page
ECCV Paper
arXiv
Dataset





Example of our generated videos.

## Source Code

We provide source codes of our KineTy model. Details are as follows.

### 🏢 Installation

#### Setup conda environment

```
git clone https://github.com/SeonmiP/KineTy.git
cd KineTy
conda env create -f environment.yaml
conda activate kinety
```

#### Download Stable Diffusion V1.5

```
git lfs install
git clone https://huggingface.co/runwayml/stable-diffusion-v1-5 models/StableDiffusion/
```

### 💾 Dataset
We provide how to make dataset [here](https://github.com/SeonmiP/KineTy/blob/main/dataset_construction)

### ⚽ Training
We trained our code on a machine with 8 NVIDIA A100 GPU.

```
torchrun --nnodes=1 --nproc_per_node=1 train.py --config configs/train.yaml
```

### 🎨 Inference
Our code is executed on an NVIDIA A100 GPU, but we also check if it runs on an NVIDIA GeForce 3090 Ti.

```
python -m inference --config configs/inference.yaml
```

## Acknowledgements
Part of our code is built upon [AnimateDiff](https://github.com/guoyww/AnimateDiff/tree/main) and [Tune-a-Video](https://github.com/showlab/Tune-A-Video). The visualization of the attention map refers to [FateZero](https://github.com/ChenyangQiQi/FateZero/tree/main) and [prompt-to-prompt](https://github.com/google/prompt-to-prompt/). Thanks to the authors for sharing their works.