Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/SherryXTChen/TiNO-Edit
TiNO-Edit: Timestep and Noise Optimization for Robust Diffusion-Based Image Editing (CVPR 2024)
https://github.com/SherryXTChen/TiNO-Edit
Last synced: 13 days ago
JSON representation
TiNO-Edit: Timestep and Noise Optimization for Robust Diffusion-Based Image Editing (CVPR 2024)
- Host: GitHub
- URL: https://github.com/SherryXTChen/TiNO-Edit
- Owner: SherryXTChen
- License: apache-2.0
- Created: 2024-03-24T18:20:55.000Z (8 months ago)
- Default Branch: main
- Last Pushed: 2024-07-07T23:35:39.000Z (4 months ago)
- Last Synced: 2024-08-01T18:33:33.479Z (3 months ago)
- Language: Python
- Homepage:
- Size: 2.24 MB
- Stars: 17
- Watchers: 5
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-diffusion-categorized - [Code
README
# TiNO-Edit: Timestep and Noise Optimization for Robust Diffusion-Based Image Editing (CVPR 2024)
[[Arxiv](https://arxiv.org/abs/2404.11120)] [[Poster](https://cvpr.thecvf.com/virtual/2024/poster/31387)] [[Youtube](https://www.youtube.com/watch?v=latSSiMcfds)]
TiNO-Edit is an image editing algorithm built on top of Stable Diffusion (SD) by optimizing noise and timesteps in the SD latent space.
## Capabilities
## LatentCLIPvis & LatentVGG
LatentCLIPvis and LatentVGG are the SD latent space equivalents of the CLIP vision model and VGG. To train these models, see `latentclip` and `latentvgg` respectively. We will provide an explanation of our code soon. We also provide pretrained checkpoints [here](https://www.dropbox.com/scl/fo/0jdk7kddwtfstpc0gshx4/h?rlkey=wdfejfkf5sho513v8l7ddw2px&st=e3nhfopc&dl=0).
## Method (Code coming soon ...)
## BibTeX
``` bibtex
@inproceedings{chen2024tino,
title={TiNO-Edit: Timestep and Noise Optimization for Robust Diffusion-Based Image Editing},
author={Chen, Sherry X and Vaxman, Yaron and Ben Baruch, Elad and Asulin, David and Moreshet, Aviad and Lien, Kuo-Chin and Sra, Misha and Sen, Pradeep},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={6337--6346},
year={2024}
}
```