Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/ShipengWang/Adam-NSCL
PyTorch implementation of our Adam-NSCL algorithm from our CVPR2021 (oral) paper "Training Networks in Null Space for Continual Learning"
https://github.com/ShipengWang/Adam-NSCL
continual-learning incremental-learning lifelong-learning
Last synced: about 2 months ago
JSON representation
PyTorch implementation of our Adam-NSCL algorithm from our CVPR2021 (oral) paper "Training Networks in Null Space for Continual Learning"
- Host: GitHub
- URL: https://github.com/ShipengWang/Adam-NSCL
- Owner: ShipengWang
- License: mit
- Created: 2021-03-04T10:39:05.000Z (almost 4 years ago)
- Default Branch: main
- Last Pushed: 2021-07-24T12:45:28.000Z (over 3 years ago)
- Last Synced: 2024-08-04T03:11:08.702Z (5 months ago)
- Topics: continual-learning, incremental-learning, lifelong-learning
- Language: Python
- Homepage:
- Size: 3.74 MB
- Stars: 46
- Watchers: 1
- Forks: 2
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Adam-NSCL
This is a PyTorch implementation of Adam-NSCL algorithm for continual learning from our CVPR2021 (oral) paper:**Title**: [Training Networks in Null Space of Feature Covariance for Continual Learning](https://openaccess.thecvf.com/content/CVPR2021/papers/Wang_Training_Networks_in_Null_Space_of_Feature_Covariance_for_Continual_CVPR_2021_paper.pdf)
**Authors**: Shipeng Wang, Xiaorong Li, Jian Sun, Zongben Xu
**Email**: [email protected]; [email protected]
**Arxiv**: https://arxiv.org/pdf/2103.07113
Usage
-```
sh scripts_svd/adamnscl.sh
```**Requirements**: Python 3.7, PyTorch=1.5,tensorboardX
Citation
```
@InProceedings{Wang_2021_CVPR,
author = {Wang, Shipeng and Li, Xiaorong and Sun, Jian and Xu, Zongben},
title = {Training Networks in Null Space of Feature Covariance for Continual Learning},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2021},
pages = {184-193}
}
```