Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/ShixiangWang/polar

polar: Dots and Their Connections in Polar Coordinate System
https://github.com/ShixiangWang/polar

ggplot2-enhancements

Last synced: 2 months ago
JSON representation

polar: Dots and Their Connections in Polar Coordinate System

Awesome Lists containing this project

README

        

---
output: github_document
---

```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%"
)
```

# ggpolar: Dots and Their Connections in Polar Coordinate System

[![ggpolar status badge](https://shixiangwang.r-universe.dev/badges/ggpolar)](https://shixiangwang.r-universe.dev)
[![CRAN
status](https://www.r-pkg.org/badges/version/ggpolar)](https://CRAN.R-project.org/package=ggpolar)
[![](https://cranlogs.r-pkg.org/badges/grand-total/ggpolar?color=blue)](https://cran.r-project.org/package=ggpolar)

`{ggpolar}` provides a very flexible way to create dots in coordinate system
for event list and connect the dots with segments based on [`{ggplot2}`](https://ggplot2.tidyverse.org/).

## Installation

You can install the released version of `{ggpolar}` from CRAN with:

``` r
install.packages("ggpolar")
```

You can install the development version of `{ggpolar}` from GitHub with:

``` r
remotes::install_github("ShixiangWang/polar")
```

## Example

### Init a polar plot

```{r example}
library(ggpolar)

data <- data.frame(x = LETTERS[1:7])

p1 <- polar_init(data, x = x)
p1

# Set aes value
p2 <- polar_init(data, x = x, size = 3, color = "red", alpha = 0.5)
p2

# Set aes mapping
set.seed(123L)
data1 <- data.frame(
x = LETTERS[1:7],
shape = c("r", "r", "r", "b", "b", "b", "b"),
color = c("r", "r", "r", "b", "b", "b", "b"),
size = abs(rnorm(7))
)
# Check https://ggplot2.tidyverse.org/reference/geom_point.html
# for how to use both stroke and color
p3 <- polar_init(data1, x = x, aes(size = size, color = color, shape = shape), alpha = 0.5)
p3
```

### Connect polar dots

```{r}
data2 <- data.frame(
x1 = LETTERS[1:7],
x2 = c("B", "C", "D", "E", "C", "A", "C"),
color = c("r", "r", "r", "b", "b", "b", "b")
)
p4 <- p3 + polar_connect(data2, x1, x2)
p4

# Unlike polar_init, mappings don't need to be included in aes()
p5 <- p3 + polar_connect(data2, x1, x2, color = color, alpha = 0.8, linetype = 2)
p5

# Use two different color scales
if (requireNamespace("ggnewscale")) {
library(ggnewscale)
p6 = p3 +
new_scale("color") +
polar_connect(data2, x1, x2, color = color, alpha = 0.8, linetype = 2)
print(p6 + scale_color_brewer())
print(p6 + scale_color_manual(values = c("darkgreen", "magenta")))
}
```

## Citation

If you use `{ggpolar}` in academic research, please cite the following paper along
with the GitHub repo.

*Antigen presentation and tumor immunogenicity in cancer immunotherapy response prediction*, __eLife__. https://doi.org/10.7554/eLife.49020.