https://github.com/SimoneGasperini/qiskit-symb
Symbolic evaluation of parameterized quantum circuits in Qiskit
https://github.com/SimoneGasperini/qiskit-symb
qiskit quantum-computing symbolic-computation sympy
Last synced: 5 months ago
JSON representation
Symbolic evaluation of parameterized quantum circuits in Qiskit
- Host: GitHub
- URL: https://github.com/SimoneGasperini/qiskit-symb
- Owner: SimoneGasperini
- License: apache-2.0
- Created: 2023-05-15T13:21:48.000Z (over 2 years ago)
- Default Branch: master
- Last Pushed: 2025-01-13T20:52:18.000Z (9 months ago)
- Last Synced: 2025-04-12T22:00:03.779Z (6 months ago)
- Topics: qiskit, quantum-computing, symbolic-computation, sympy
- Language: Python
- Homepage: https://pypi.org/project/qiskit-symb/
- Size: 467 KB
- Stars: 34
- Watchers: 1
- Forks: 3
- Open Issues: 2
-
Metadata Files:
- Readme: README.md
- License: LICENSE
- Citation: CITATION.cff
Awesome Lists containing this project
README

![]()
![]()
# Table of contents
- [Introduction](#introduction)
- [Installation](#installation)
- [User-mode](#user-mode)
- [Dev-mode](#dev-mode)
- [Usage examples](#usage-examples)
- [_Sympify_ a Qiskit circuit](#sympify-a-qiskit-circuit)
- [_Lambdify_ a Qiskit circuit](#lambdify-a-qiskit-circuit)
- [Qiskit Medium](#qiskit-medium)
- [Contributors](#contributors)# Introduction
The `qiskit-symb` package is meant to be a Python tool to enable the symbolic evaluation of parametric quantum states defined by [Qiskit](https://github.com/Qiskit/qiskit) by parameterized quantum circuits.A Parameterized Quantum Circuit (PQC) is a quantum circuit where we have at least one free parameter (e.g. a rotation angle $\theta$). PQCs are particularly relevant in Quantum Machine Learning (QML) models, where the values of these parameters can be learned during training to reach the desired output.
In particular, `qiskit-symb` can be used to create a symbolic representation of a parametric quantum state directly from the Qiskit quantum circuit. This has been achieved through the re-implementation of some basic classes defined in the [`qiskit/quantum_info/`](https://github.com/Qiskit/qiskit/tree/main/qiskit/quantum_info) module by using [sympy](https://github.com/sympy/sympy) as a backend for symbolic expressions manipulation.
# Installation
## User-mode
```
pip install qiskit-symb
```:warning: The package requires `qiskit>=1`. See the official [Migration guides](https://docs.quantum.ibm.com/api/migration-guides) if you are used to a prevoius Qiskit version.
## Dev-mode
```
git clone https://github.com/SimoneGasperini/qiskit-symb.git
cd qiskit-symb
pip install -e .
```# Usage examples
### _Sympify_ a Qiskit circuit
Let's get started on how to use `qiskit-symb` to get the symbolic representation of a given Qiskit circuit. In particular, in this first basic example, we consider the following quantum circuit:
```python
from qiskit import QuantumCircuit
from qiskit.circuit import Parameter, ParameterVectory = Parameter('y')
p = ParameterVector('p', length=2)pqc = QuantumCircuit(2)
pqc.ry(y, 0)
pqc.cx(0, 1)
pqc.u(p[0], 0, p[1], 1)pqc.draw('mpl')
```
To get the *sympy* representation of the unit-norm complex vector prepared by the parameterized circuit, we just have to create the symbolic `Statevector` instance and call the `to_sympy()` method:
```python
from qiskit_symb.quantum_info import Statevectorpsi = Statevector(pqc)
psi.to_sympy()
```
```math
\left[\begin{matrix}\cos{\left(\frac{p[0]}{2} \right)} \cos{\left(\frac{y}{2} \right)} & - e^{1.0 i p[1]} \sin{\left(\frac{p[0]}{2} \right)} \sin{\left(\frac{y}{2} \right)} & \sin{\left(\frac{p[0]}{2} \right)} \cos{\left(\frac{y}{2} \right)} & e^{1.0 i p[1]} \sin{\left(\frac{y}{2} \right)} \cos{\left(\frac{p[0]}{2} \right)}\end{matrix}\right]
```If you want then to assign a value to some specific parameter, you can use the `subs()` method passing a dictionary that maps each parameter to the desired corresponding value:
```python
new_psi = psi.subs({p: [-1, 2]})
new_psi.to_sympy()
```
```math
\left[\begin{matrix}\cos{\left(\frac{1}{2} \right)} \cos{\left(\frac{y}{2} \right)} & e^{2.0 i} \sin{\left(\frac{1}{2} \right)} \sin{\left(\frac{y}{2} \right)} & - \sin{\left(\frac{1}{2} \right)} \cos{\left(\frac{y}{2} \right)} & e^{2.0 i} \sin{\left(\frac{y}{2} \right)} \cos{\left(\frac{1}{2} \right)}\end{matrix}\right]
```### _Lambdify_ a Qiskit circuit
Given a Qiskit circuit, `qiskit-symb` also allows to generate a Python lambda function with actual arguments matching the Qiskit unbound parameters.
Let's consider the following example starting from a `ZZFeatureMap` circuit, commonly used as a data embedding ansatz in QML applications:
```python
from qiskit.circuit.library import ZZFeatureMappqc = ZZFeatureMap(feature_dimension=3, reps=1)
pqc.draw('mpl')
```
To get the Python function representing the final parameteric statevector, we just have to create the symbolic `Statevector` instance and call the `to_lambda()` method:
```python
from qiskit_symb.quantum_info import Statevectorpqc = pqc.decompose()
statevec = Statevector(pqc).to_lambda()
```We can now call the lambda-generated function `statevec` passing the `x` values we want to assign to each parameter. The returned object will be a *numpy* 2D-array (with `shape=(8,1)` in this case) representing the final output statevector `psi`.
```python
x = [1.24, 2.27, 0.29]
psi = statevec(*x)
```This feature can be useful when, given a Qiskit PQC, we want to run it multiple times with different parameters values. Indeed, we can perform a single symbolic evalutation and then call the lambda generated function as many times as needed, passing different values of the parameters at each iteration.
# Qiskit Medium
Read my [blog post](https://medium.com/p/b6b4407fa705) introducing to `qiskit-symb` published on the official Qiskit Medium blog.
# Contributors