Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/SkalskiP/top-cvpr-2023-papers

This repository is a curated collection of the most exciting and influential CVPR 2023 papers. πŸ”₯ [Paper + Code]
https://github.com/SkalskiP/top-cvpr-2023-papers

computer-vision cvpr cvpr2023 image-segmentation object-detection paper transformers vision-and-language

Last synced: about 1 month ago
JSON representation

This repository is a curated collection of the most exciting and influential CVPR 2023 papers. πŸ”₯ [Paper + Code]

Awesome Lists containing this project

README

        

![visitor badge](https://visitor-badge.laobi.icu/badge?page_id=SkalskiP.top-cvpr-2023-papers)


top CVPR 2023 papers


2024



vancouver

## πŸ‘‹ hello

Computer Vision and Pattern Recognition is a massive conference. In **2023** alone, **9,155** papers were submitted, and **2,359** were accepted. I created this repository to help you search for crème de la crème of CVPR publications. If the paper you are looking for is not on my short list, take a peek at the full [list](https://cvpr.thecvf.com/Conferences/2023/AcceptedPapers) of accepted papers.

## πŸ—žοΈ papers

| **topic** | **title** | **repository / paper** |
|:---------:|:---------:|:----------------------:|
| Segmentation | OneFormer: One Transformer To Rule Universal Image Segmentation | [![GitHub](https://img.shields.io/github/stars/SHI-Labs/OneFormer?style=social)](https://github.com/SHI-Labs/OneFormer) [![arXiv](https://img.shields.io/badge/arXiv-2211.06220-b31b1b.svg)](https://arxiv.org/abs/2211.06220)|
| Segmentation | X-Decoder: Generalized Decoding for Pixel, Image and Language | [![GitHub](https://img.shields.io/github/stars/microsoft/X-Decoder?style=social)](https://github.com/microsoft/X-Decoder) [![arXiv](https://img.shields.io/badge/arXiv-2212.11270-b31b1b.svg)](https://arxiv.org/abs/2212.11270)|
| Segmentation and Generative AI | Images Speak in Images: A Generalist Painter for In-Context Visual Learning | [![GitHub](https://img.shields.io/github/stars/baaivision/Painter?style=social)](https://github.com/baaivision/Painter) [![arXiv](https://img.shields.io/badge/arXiv-2212.02499-b31b1b.svg)](https://arxiv.org/abs/2212.02499)|
| Segmentation | PACO: Parts and Attributes of Common Objects | [![GitHub](https://img.shields.io/github/stars/facebookresearch/paco?style=social)](https://github.com/facebookresearch/paco) [![arXiv](https://img.shields.io/badge/arXiv-2301.01795-b31b1b.svg)](https://arxiv.org/abs/2301.01795)|
| Segmentation | Open-Vocabulary Semantic Segmentation with Mask-adapted CLIP | [![GitHub](https://img.shields.io/github/stars/facebookresearch/ov-seg?style=social)](https://github.com/facebookresearch/ov-seg) [![arXiv](https://img.shields.io/badge/arXiv-2210.04150-b31b1b.svg)](https://arxiv.org/abs/2210.04150)|
| NeRF | DynIBaR: Neural Dynamic Image-Based Rendering | [![GitHub](https://img.shields.io/github/stars/google/dynibar?style=social)](https://github.com/google/dynibar) [![arXiv](https://img.shields.io/badge/arXiv-2211.11082-b31b1b.svg)](https://arxiv.org/abs/2211.11082)|
| 3D | Vid2Avatar: 3D Avatar Reconstruction from Videos in the Wild via Self-supervised Scene Decomposition | [![GitHub](https://img.shields.io/github/stars/MoyGcc/vid2avatar?style=social)](https://github.com/MoyGcc/vid2avatar) [![arXiv](https://img.shields.io/badge/arXiv-2302.11566-b31b1b.svg)](https://arxiv.org/abs/2302.11566)|
| Generative AI | 3D-aware Conditional Image Synthesis | [![GitHub](https://img.shields.io/github/stars/dunbar12138/pix2pix3d?style=social)](https://github.com/dunbar12138/pix2pix3d) [![arXiv](https://img.shields.io/badge/arXiv-2302.08509-b31b1b.svg)](https://arxiv.org/abs/2302.08509)|
| 3D | 3D Human Mesh Estimation from Virtual Markers | [![GitHub](https://img.shields.io/github/stars/ShirleyMaxx/VirtualMarker?style=social)](https://github.com/ShirleyMaxx/VirtualMarker) [![arXiv](https://img.shields.io/badge/arXiv-2303.11726-b31b1b.svg)](https://arxiv.org/abs/2303.11726)|
| Transfer Learning | A Data-Based Perspective on Transfer Learning | [![GitHub](https://img.shields.io/github/stars/MadryLab/data-transfer?style=social)](https://github.com/MadryLab/data-transfer) [![arXiv](https://img.shields.io/badge/arXiv-2207.05739-b31b1b.svg)](https://arxiv.org/abs/2207.05739)|
| Segmentation | Open-Vocabulary Panoptic Segmentation with Text-to-Image Diffusion Models | [![GitHub](https://img.shields.io/github/stars/NVlabs/ODISE?style=social)](https://github.com/NVlabs/ODISE) [![arXiv](https://img.shields.io/badge/arXiv-2303.04803-b31b1b.svg)](https://arxiv.org/abs/2303.04803)|
| Generative AI | DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation | [![GitHub](https://img.shields.io/github/stars/google/dreambooth?style=social)](https://github.com/google/dreambooth) [![arXiv](https://img.shields.io/badge/arXiv-2208.12242-b31b1b.svg)](https://arxiv.org/abs/2208.12242)|
| Generative AI | InstructPix2Pix: Learning to Follow Image Editing Instructions | [![GitHub](https://img.shields.io/github/stars/timothybrooks/instruct-pix2pix?style=social)](https://github.com/timothybrooks/instruct-pix2pix) [![arXiv](https://img.shields.io/badge/arXiv-2211.09800-b31b1b.svg)](https://arxiv.org/abs/2211.09800)|
| Generative AI | High-resolution image reconstruction with latent diffusion models from human brain activity | [![GitHub](https://img.shields.io/github/stars/yu-takagi/StableDiffusionReconstruction?style=social)](https://github.com/yu-takagi/StableDiffusionReconstruction) [![arXiv](https://img.shields.io/badge/arXiv-2306.11536-b31b1b.svg)](https://arxiv.org/abs/2306.11536)|
| Benchmarking | Beyond mAP: Towards better evaluation of instance segmentation | [![GitHub](https://img.shields.io/github/stars/rohitrango/beyond-map?style=social)](https://github.com/rohitrango/beyond-map) [![arXiv](https://img.shields.io/badge/arXiv-2207.01614-b31b1b.svg)](https://arxiv.org/abs/2207.01614)|
| NeRF | SPIn-NeRF: Multiview Segmentation and Perceptual Inpainting with Neural Radiance Fields | [![GitHub](https://img.shields.io/github/stars/SamsungLabs/SPIn-NeRF?style=social)](https://github.com/SamsungLabs/SPIn-NeRF) [![arXiv](https://img.shields.io/badge/arXiv-2211.12254-b31b1b.svg)](https://arxiv.org/abs/2211.12254)|
| 3D | Omni3D: A Large Benchmark and Model for 3D Object Detection in the Wild | [![GitHub](https://img.shields.io/github/stars/facebookresearch/omni3d?style=social)](https://github.com/facebookresearch/omni3d) [![arXiv](https://img.shields.io/badge/arXiv-2207.10660-b31b1b.svg)](https://arxiv.org/abs/2207.10660)|
| 3D | ECON: Explicit Clothed humans Optimized via Normal integration | [![GitHub](https://img.shields.io/github/stars/YuliangXiu/ECON?style=social)](https://github.com/YuliangXiu/ECON) [![arXiv](https://img.shields.io/badge/arXiv-2212.07422-b31b1b.svg)](https://arxiv.org/abs/2212.07422)|
| 3D | NeuralLift-360: Lifting An In-the-wild 2D Photo to A 3D Object with 360Β° Views | [![GitHub](https://img.shields.io/github/stars/VITA-Group/NeuralLift-360?style=social)](https://github.com/VITA-Group/NeuralLift-360) [![arXiv](https://img.shields.io/badge/arXiv-2211.16431-b31b1b.svg)](https://arxiv.org/abs/2211.16431)|

## 🦸 contribution

We would love your help in making this repository even better! If you know of an amazing paper that isn't listed
here, or if you have any suggestions for improvement, feel free to open an
[issue](https://github.com/SkalskiP/top-cvpr-2023-papers/issues) or submit a
[pull request](https://github.com/SkalskiP/top-cvpr-2023-papers/pulls).