Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/SkyTNT/anime-segmentation
high-accuracy segmentation for anime character
https://github.com/SkyTNT/anime-segmentation
anime segmentation
Last synced: 2 months ago
JSON representation
high-accuracy segmentation for anime character
- Host: GitHub
- URL: https://github.com/SkyTNT/anime-segmentation
- Owner: SkyTNT
- License: apache-2.0
- Created: 2022-08-14T07:48:29.000Z (over 2 years ago)
- Default Branch: main
- Last Pushed: 2023-06-03T12:04:58.000Z (over 1 year ago)
- Last Synced: 2024-08-04T04:07:06.649Z (6 months ago)
- Topics: anime, segmentation
- Language: Python
- Homepage:
- Size: 13.7 MB
- Stars: 605
- Watchers: 4
- Forks: 59
- Open Issues: 6
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-acg - Anime Segmentation - High-accuracy segmentation for anime character. [English] (Image Processing)
README
# Anime Segmentation
Segmentation for anime character![](./doc/banner.jpg)
## Online Demo
Integrated into [Huggingface Spaces 🤗](https://huggingface.co/spaces) using [Gradio](https://github.com/gradio-app/gradio). Try it out [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/skytnt/anime-remove-background)
## Support Models
[ISNet](https://github.com/xuebinqin/DIS), [U2Net](https://github.com/xuebinqin/U-2-Net), [MODNet](https://github.com/ZHKKKe/MODNet), [InSPyReNet](https://github.com/plemeri/inspyrenet)
## Download Trained Models
Models can be downloaded [here](https://huggingface.co/skytnt/anime-seg)
## Requirements
You need to [install pytorch](https://pytorch.org/) first
Then `pip install -r requirements.txt`
## Train
`python train.py --net isnet_is --data-dir path/to/dataset --epoch 1000 --batch-size-train 10 --batch-size-val 4 --workers-train 10 --workers-val 5 --acc-step 3 --benchmark --log-step 10 --val-epoch 3 --img-size 1024`
detail
```
arguments:
-h, --help show this help message and exit
--net {isnet_is,isnet,u2net,u2netl,modnet,inspyrnet_res,inspyrnet_swin}
isnet_is: Train ISNet with intermediate feature supervision,
isnet: Train ISNet,
u2net: Train U2Net full,
u2netl: Train U2Net lite,
modnet: Train MODNet
inspyrnet_res: Train InSPyReNet_Res2Net50
inspyrnet_swin: Train InSPyReNet_SwinB
--pretrained-ckpt PRETRAINED_CKPT
load form pretrained ckpt of net
--resume-ckpt RESUME_CKPT
resume training from ckpt
--img-size IMG_SIZE image size for training and validation,
1024 recommend for ISNet,
384 recommend for InSPyReNet,
640 recommend for others,--data-dir DATA_DIR root dir of dataset
--fg-dir FG_DIR relative dir of foreground
--bg-dir BG_DIR relative dir of background
--img-dir IMG_DIR relative dir of images
--mask-dir MASK_DIR relative dir of masks
--fg-ext FG_EXT extension name of foreground
--bg-ext BG_EXT extension name of background
--img-ext IMG_EXT extension name of images
--mask-ext MASK_EXT extension name of masks
--data-split DATA_SPLIT
split rate for training and validation
--lr LR learning rate
--epoch EPOCH epoch num
--gt-epoch GT_EPOCH epoch for training ground truth encoder when net is isnet_is
--batch-size-train BATCH_SIZE_TRAIN
batch size for training
--batch-size-val BATCH_SIZE_VAL
batch size for val
--workers-train WORKERS_TRAIN
workers num for training dataloader
--workers-val WORKERS_VAL
workers num for validation dataloader
--acc-step ACC_STEP gradient accumulation step
--accelerator {cpu,gpu,tpu,ipu,hpu,auto}
accelerator
--devices DEVICES devices num
--fp32 disable mix precision
--benchmark enable cudnn benchmark
--log-step LOG_STEP log training loss every n steps
--val-epoch VAL_EPOCH
valid and save every n epoch
--cache-epoch CACHE_EPOCH
update cache every n epoch
--cache CACHE ratio (cache to entire training dataset), higher
value require more memory, set 0 to disable cache
```## Inference
`python inference.py --net isnet_is --ckpt path/to/isnet_is.ckpt --data-dir path/to/input_data --out out --img-size 1024 --only-matted`
## Export model
`python export.py --net isnet_is --ckpt path/to/isnet_is.ckpt --to onnx --out isnet.onnx --img-size 1024`
## Dataset
This dataset is a combined dataset of [AniSeg](https://github.com/jerryli27/AniSeg#about-the-models) and [character_bg_seg_data](https://github.com/ShuhongChen/bizarre-pose-estimator#download).
I clean the dataset using [DeepDanbooru](https://github.com/KichangKim/DeepDanbooru) first then manually, to make sue all mask is anime character.
#### download
```shell
git lfs install
git clone https://huggingface.co/datasets/skytnt/anime-segmentation
cd anime-segmentation
unzip -q 'data/*.zip'
```