Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/SkyworkAI/PointCloudMamba?tab=readme-ov-file
Point Cloud Mamba: Point Cloud Learning via State Space Model
https://github.com/SkyworkAI/PointCloudMamba?tab=readme-ov-file
Last synced: 3 months ago
JSON representation
Point Cloud Mamba: Point Cloud Learning via State Space Model
- Host: GitHub
- URL: https://github.com/SkyworkAI/PointCloudMamba?tab=readme-ov-file
- Owner: SkyworkAI
- Created: 2024-03-25T05:25:41.000Z (10 months ago)
- Default Branch: main
- Last Pushed: 2024-06-03T13:51:55.000Z (7 months ago)
- Last Synced: 2024-08-01T04:02:12.574Z (6 months ago)
- Language: Python
- Homepage:
- Size: 854 KB
- Stars: 72
- Watchers: 6
- Forks: 6
- Open Issues: 5
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- Awesome-state-space-models - Point Cloud Analysis
README
# [Point Cloud Mamba: Point Cloud Learning via State Space Model](https://arxiv.org/abs/2403.00762)
Tao Zhang, Xiangtai Li*, Haobo Yuan, Shunping Ji, Shuicheng Yan
## News
- All codes and weights are available.## Features
- PCM introduces Mamba to point cloud analysis.
- PCM can perform global modeling while maintaining linear computational complexity.
- PCM outperforms PointNeXt on the ScanObjectNN, ModelNet40, and ShapeNetPart datasets.## Install
See [Installation Instructions](INSTALL.md).## Getting Started
See [Preparing Datasets for PCM](data/README.md).See [Getting Started with PCM](GETTING_STARTED.md).
## Demos
### ShapeNetPart## Performance
### 3-D Point Cloud Classification### 3-D Point Cloud Segmentation
```BibTeX
@article{zhang2024point,
title={Point Cloud Mamba: Point Cloud Learning via State Space Model},
author={Zhang, Tao and Li, Xiangtai and Yuan, Haobo and Ji, Shunping and Yan, Shuicheng},
journal={arXiv preprint arXiv:2403.00762},
year={2024}
}
```## Acknowledgement
This repo is based on [PointNeXt](https://github.com/guochengqian/PointNeXt),
[PointMLP](https://github.com/ma-xu/pointMLP-pytorch), [Mamba](https://github.com/state-spaces/mamba),
[Vim](https://github.com/hustvl/Vim), and [Pontcept](https://github.com/Pointcept/Pointcept).
Thanks for their excellent works.