Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/SmallVagetable/machine_learning_python
通过阅读网上的资料代码,进行自我加工,努力实现常用的机器学习算法。实现算法有KNN、Kmeans、EM、Perceptron、决策树、逻辑回归、svm、adaboost、朴素贝叶斯
https://github.com/SmallVagetable/machine_learning_python
Last synced: 4 months ago
JSON representation
通过阅读网上的资料代码,进行自我加工,努力实现常用的机器学习算法。实现算法有KNN、Kmeans、EM、Perceptron、决策树、逻辑回归、svm、adaboost、朴素贝叶斯
- Host: GitHub
- URL: https://github.com/SmallVagetable/machine_learning_python
- Owner: SmallVagetable
- Created: 2019-01-10T15:07:46.000Z (about 6 years ago)
- Default Branch: master
- Last Pushed: 2019-10-22T11:12:50.000Z (over 5 years ago)
- Last Synced: 2024-07-10T23:26:36.809Z (8 months ago)
- Language: Python
- Homepage:
- Size: 2.96 MB
- Stars: 709
- Watchers: 28
- Forks: 267
- Open Issues: 4
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# machine-learning
通过阅读网上的资料代码,进行自我加工,努力实现常用的机器学习算法。# 目前已经实现可运行算法
### [KNN和KdTree的实现](https://github.com/SmallVagetable/machine_learning_python/tree/master/knn)
### [感知机的基本形式和对偶形式的实现](https://github.com/SmallVagetable/machine_learning_python/tree/master/perceptron)
### [Kmeans和Kmeans++的实现](https://github.com/SmallVagetable/machine_learning_python/tree/master/kmeans)
### [EM GMM高斯混合和GMM+LASSO的实现](https://github.com/SmallVagetable/machine_learning_python/tree/master/em)
### [实现朴素贝叶斯的基本算法和高斯混合朴素贝叶斯算法](https://github.com/SmallVagetable/machine_learning_python/tree/master/naive_bayes)
### [实现决策树的基本算法](https://github.com/SmallVagetable/machine_learning_python/tree/master/decision_tree)
### [实现adaboost基本算法](https://github.com/SmallVagetable/machine_learning_python/tree/master/adaboost)
### [实现svm基本算法](https://github.com/SmallVagetable/machine_learning_python/tree/master/support_vector_machine)
### [实现逻辑回归基本算法](https://github.com/SmallVagetable/machine_learning_python/tree/master/logistic_regression)