Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/SotaroKaneda/MLCarbon
End-to-end carbon footprint mod- eling tool
https://github.com/SotaroKaneda/MLCarbon
Last synced: about 1 month ago
JSON representation
End-to-end carbon footprint mod- eling tool
- Host: GitHub
- URL: https://github.com/SotaroKaneda/MLCarbon
- Owner: SotaroKaneda
- Created: 2023-07-26T18:13:56.000Z (over 1 year ago)
- Default Branch: main
- Last Pushed: 2024-05-14T15:52:54.000Z (7 months ago)
- Last Synced: 2024-08-02T06:11:56.978Z (4 months ago)
- Language: Python
- Size: 2.01 MB
- Stars: 27
- Watchers: 2
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- awesome-green-ai - MLCarbon - End-to-end carbon footprint modeling tool. (🛠Tools / Calculation Tools)
- Awesome-Resource-Efficient-LLM-Papers - LLMCarbon
README
# LLMCarbon
A prelimiary code repo for LLMCarbon: Modeling the End-to-End Carbon Footprint of Large Language Models. More details can be viewed at https://github.com/UnchartedRLab/LLMCarbon. LLMCarbon provides precise predictions of both operational and embodied carbon footprints of large language models (LLMs), enabling effective exploration of the design space by considering the trade-off between test loss and carbon footprint. These carbon footprint exploration can be considered before training an LLM to ensure responsible and sustainable development.## Run Validations
To generate the data in the table 4 and table 5 in the paper
```
python3 llmcarbon_tutorial.py
```## Estimation of CO2 equivalent emissions of tranformer based large language models
Estimated regression coefficients used for polynomial fit $\mathbf{y = ax^2 + bx + c} $
- Tensor model throughput: $$a= -8.82079068\times 10^{-20}, b= 1.68591116\times 10^{-09}, c= 1.33954735\times 10^{+02}$$
- Pipeline model throughput: $$a= -5.60233749\times 10^{-23}, b= 8.45435587\times 10^{-11}, c= 1.34546129\times 10^{+02}$$
- Total number of GPUs: $$a= -2.12910565\times 10^{-21}, b= 4.39684339\times 10^{-09}, c=7.99173057\times 10^{+02}$$
- Batch Size: $$a = -4.29439186\times 10^{-01}, b= 5.21376002\times 10^{+01}, c= 1.43737095\times 10^{+03}$$![alt text](https://github.com/SotaroKaneda/MLCarbon/blob/main/img/ml_para_set_1.jpg)
## Bibtex
```
@inproceedings{
faiz2024llmcarbon,
title={{LLMC}arbon: Modeling the End-to-End Carbon Footprint of Large Language Models},
author={Ahmad Faiz and Sotaro Kaneda and Ruhan Wang and Rita Chukwunyere Osi and Prateek Sharma and Fan Chen and Lei Jiang},
booktitle={The Twelfth International Conference on Learning Representations},
year={2024},
url={https://openreview.net/forum?id=aIok3ZD9to}
}
```