https://github.com/StanfordVL/taskonomy
Taskonomy: Disentangling Task Transfer Learning [Best Paper, CVPR2018]
https://github.com/StanfordVL/taskonomy
Last synced: 6 months ago
JSON representation
Taskonomy: Disentangling Task Transfer Learning [Best Paper, CVPR2018]
- Host: GitHub
- URL: https://github.com/StanfordVL/taskonomy
- Owner: StanfordVL
- License: mit
- Created: 2017-12-18T20:08:09.000Z (almost 8 years ago)
- Default Branch: master
- Last Pushed: 2022-12-08T01:00:20.000Z (almost 3 years ago)
- Last Synced: 2024-08-03T18:12:27.320Z (over 1 year ago)
- Language: Python
- Homepage: https://taskonomy.vision
- Size: 26.9 MB
- Stars: 837
- Watchers: 33
- Forks: 146
- Open Issues: 32
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- Awesome-Multi-Task-Learning - Taskonomy
README
# [Taskonomy: Disentangling Task Transfer Learning](https://taskonomy.vision/)
This repository contains:
- [pretrained models (task bank)](https://github.com/StanfordVL/taskonomy/tree/master/taskbank) [PyTorch + TensorFlow].
- [dataset](https://github.com/StanfordVL/taskonomy/tree/master/data)
- [reference code](https://github.com/StanfordVL/taskonomy/tree/master/code)
- [task affinity analyses and results](https://github.com/StanfordVL/taskonomy/tree/master/results)
for the the following paper:
#### [Taskonomy: Disentangling Task Transfer Learning](https://taskonomy.vision/) (CVPR 2018, Best Paper Award)
Amir Zamir, Alexander Sax*, William Shen*, Leonidas Guibas, Jitendra Malik, Silvio Savarese.
| [TASK BANK](https://github.com/StanfordVL/taskonomy/tree/master/taskbank) | [DATASET](https://github.com/StanfordVL/taskonomy/tree/master/data) |
|:-----|:-----|
| The `taskbank` folder contains information about our pretrained models, and scripts to download them. There are sample outputs, and links to live demos. | The `data` folder contains information and statistics about the dataset, some sample data, and [instructions for how to download the full dataset](https://docs.omnidata.vision/starter_dataset_download.html#Examples). |
| [](https://github.com/StanfordVL/taskonomy/tree/master/taskbank) | [](https://github.com/StanfordVL/taskonomy/tree/master/data) |
| [Task affinity analyses and results](https://github.com/StanfordVL/taskonomy/tree/master/results)| [Website](http://taskonomy.vision/) |
|:----|:----|
| This folder contains the raw and normalized data used for measuring task affinities. | The webpage of the project with links to assets and demos. |
|[](https://github.com/StanfordVL/taskonomy/tree/master/results) | [](http://taskonomy.vision/)|
## Citation
If you find the code, models, or data useful, please cite this paper:
```
@inproceedings{zamir2018taskonomy,
title={Taskonomy: Disentangling Task Transfer Learning},
author={Zamir, Amir R and Sax, Alexander and and Shen, William B and Guibas, Leonidas and Malik, Jitendra and Savarese, Silvio},
booktitle={2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2018},
organization={IEEE}
}
```