Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/StefanSalewski/minmaxheap
Heap with minimum and maximum access
https://github.com/StefanSalewski/minmaxheap
Last synced: about 2 months ago
JSON representation
Heap with minimum and maximum access
- Host: GitHub
- URL: https://github.com/StefanSalewski/minmaxheap
- Owner: StefanSalewski
- License: mit
- Created: 2019-03-15T13:33:20.000Z (almost 6 years ago)
- Default Branch: master
- Last Pushed: 2019-03-15T13:39:48.000Z (almost 6 years ago)
- Last Synced: 2024-10-25T09:22:38.445Z (3 months ago)
- Language: Nim
- Size: 6.84 KB
- Stars: 2
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.adoc
- License: LICENSE
Awesome Lists containing this project
- awesome-nim - minmaxheap - A Nim implementation of a Minimum-Maximum heap. (Data / Data Structures)
README
= Heap with minimum and maximum access
(c) Stefan Salewski
:experimental:
:source-highlighter: pygments
:pygments-style: monokai
:icons: fontNim implementation of a Minimum-Maximum Heap as described in
https://en.wikipedia.org/wiki/Min-max_heap
http://www.akira.ruc.dk/~keld/teaching/algoritmedesign_f03/Artikler/02/Atkinson86.pdf
NOTE: See also https://nim-lang.github.io/Nim/heapqueue.html
NOTE: Nim generated API documentation is available here: http://ssalewski.de/minmaxheap.html
The implementation follow very closely these papers, writing the Nim code
was straight forward. The heap is generic, this means it works for most data elements
when "<" relation is defined. Add(), popMin() and popMax() operations are O(log N), access
to min and max is O(1) according to Wikipedia. Build time of initial heap is linear O(N)
and read access to min or max element is O(1).Use cases for such type of a heap are rare. One application is a ID-Number generator,
where IDs are generated in increasing order, but can be returned and reused. Reused is always the smallest
available ID, but at the same time we need to know which is the largest ID still in use. That can be
done with popMin() and max() operations. In the original paper external quicksort was mentioned as a use case.Initial heap can be generated from an array or a seq. Pop() operations will fail when len()
is already zero.The elements in heap are stored in a seq, so there is nearly no space overhead involved.
.Cost in big O notation as a function of number of elements (N)
[options="header"]
|===
| proc name | operation | costs |
|toMinMaxHeap() | creation | O(N) |
|initMinMaxHeap() | create empty heap | O(1) |
|min() | get minimum | O(1) |
|max() | get maximum | O(1) |
|clear() | reset | O(1) |
|len() | get number of elements | O(1) |
|add() | insert an element | O(log(n)) |
|popMin() | delete minimum | O(log(n)) |
|popMax() | delete maximum | O(log(n)) |
|===Install:
----
nimble install https://github.com/StefanSalewski/minmaxheap
----Currently these procs are available:
[[API]]
[source,nim]
.API
----
type MinMaxHeap*[T] = distinct seq[T]proc initMinMaxHeap*[T](): MinMaxHeap[T]
proc toMinMaxHeap*[T](h: openarray[T]): MinMaxHeap[T]
proc clear*[T](h: var MinMaxHeap[T])
proc len*[T](h: MinMaxHeap[T]): int
proc empty*[T](h: MinMaxHeap[T]): bool
proc add*[T](h: var MinMaxHeap[T]; i: T)
proc min*[T](h: var MinMaxHeap[T]): T
proc max*[T](h: var MinMaxHeap[T]): T
proc popMin*[T](h: var MinMaxHeap[T]): T
proc popMax*[T](h: var MinMaxHeap[T]): T
proc `$`*[T](h: MinMaxHeap[T]): string =
----Here is an example how the heap can be used:
[[t.nim]]
[source,nim]
.t.nim
----
import minmaxheapvar
# h = toMinMaxHeap[int](@[5, 3, 9, 1, 0])
h = toMinMaxHeap([5, 3, 9, 1, 0])echo $(h) # @[0, 5, 9, 1, 3]
echo h.min # 0
echo h.max # 9
echo h.len # 5
echo h.popMin # 0
echo h.popMax # 9
echo h.len # 3
echo h.min # 1
echo h.max # 5
h.add(8)
echo h.len # 4
echo h.popMax # 8
echo h.len # 3
h.clear
echo h.len # 0type
O = object
key: float# we need < operator defines for elements
proc `<`(a, b: O): bool =
a.key < b.keyvar
l = initMinMaxHeap[O]()
l.add(O(key: 1.2))
l.add(O(key: 0.9))
l.add(O(key: 3.3))
echo l.popMax # (key: 3.3)
echo l.popMin # (key: 0.9)
----